Abstract

Computational fluid dynamics (CFD) plays a crucial role in the design of cooling systems in gas turbine combustors due to the difficulties and costs related to experimental measurements performed in pressurized reactive environments. Despite the massive advances in computational resources in the last years, reactive unsteady and multi-scale simulations of combustor real operating conditions are still computationally expensive. Modern combustors often employ cooling schemes based on effusion technique, which provides uniform protection of the liner from hot gases, combining the heat removal by means of heat sink effect with liner coverage and protection by film cooling. However, a large number of effusion holes results in a relevant increase of computational resources required to perform a CFD simulation capable of correctly predicting the thermal load on the metal walls within the combustor. Moreover, a multi-physics and multi-scale approach is mandatory to properly consider the different characteristic scales of the several heat transfer modes within combustion chambers to achieve a reliable prediction of aerothermal fields within the combustor and wall heat fluxes and temperatures. From this point of view, loosely coupled approaches permit a strong reduction of the calculation time, since each physics is solved through a dedicated solver optimized according to the considered heat transfer mechanism. The object of this work is to highlight the capabilities of a loosely coupled unsteady multi-physics tool (U-THERM3D) developed at the University of Florence within ansys fluent. The coupling strategy will be employed for the numerical analysis of the TECFLAM effusion cooled swirl burner, an academic test rig well representative of the working conditions of a partially premixed combustion chamber equipped with an effusion cooling system, developed by the collaboration of the Universities of Darmstadt, Heidelberg, Karlsruhe, and the DLR. The highly detailed numerical results obtained from the unsteady multi-physics and multi-scale simulation will be compared with experimental data to validate the numerical procedure.

References

1.
Gustafsson
,
K. M. B.
, and
Johansson
,
T. G.
,
2001
, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
308
316
.
2.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
,
1985
, “
Full Coverage Discrete Hole Film Cooling: The Influence of Hole Size
,”
Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit. Volume 3: Heat Transfer; Electric Power
,
Houston, TX
,
Mar. 18–21
.
3.
Florenciano
,
J. L.
, and
Bruel
,
P.
,
2016
, “
LES Fluid–Solid Coupled Calculations for the Assessment of Heat Transfer Coefficient Correlations Over Multi-Perforated Walls
,”
Aerosp. Sci. Technol.
,
53
, pp.
61
73
.
4.
Darecki
, T.
M.
,
Edelstenne
,
C.
,
Enders
,
T.
,
Fernandez
,
E.
,
Hartman
,
P.
,
Herteman
,
J. P.
,
Kerkloh
,
M.
, et al
,
2011
, “
Flightpath 2050: Europe’s Vision for Aviation: Report of the High Level Group
,”
Publications Office of the European Union
:
Luxembourg
.
5.
Arnaldo Valdés
,
R. M.
,
Burmaoglu
,
S.
,
Tucci
,
V.
,
M
,
L.
,
Braga da Costa Campos
,
L. M.
,
Mattera
,
L.
, and
Gomez Comendador
,
V. F.
,
2019
, “
Flight Path 2050 and ACARE Goals for Maintaining and Extending Industrial Leadership in Aviation: A Map of the Aviation Technology Space
,”
Sustainability
,
11
(
7
), p.
2065
.
6.
McGuirk
,
J. J.
,
2014
, “
The Aerodynamic Challenges of Aeroengine Gas-Turbine Combustion Systems
,”
Aeronaut. J.
,
118
(
1204
), pp.
557
599
.
7.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2016
, “
Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031506
.
8.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Peschiulli
,
A.
,
2017
, “
The Effect of Effusion Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig With a Realistic Swirling Flow
,”
Int. J. Therm. Sci.
,
121
, pp.
75
88
.
9.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
10.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2014
, “
Impact of Swirl Flow on the Penetration Behaviour and Cooling Performance of a Starter Cooling Film in Modern Lean Operating Combustion Chambers
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer
,
Düsseldorf, Germany
,
June 16–20
.
11.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
12.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2017
, “
Assessment of Scale-Resolved Computational Fluid Dynamics Methods for the Investigation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021501
.
13.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
14.
Bertini
,
D.
,
Mazzei
,
L.
,
Puggelli
,
S.
,
Andreini
,
A.
,
Facchini
,
B.
,
Bellocci
,
L.
, and
Santoriello
,
A.
,
2018
, “
Numerical and Experimental Investigation on an Effusion-Cooled Lean Burn Aeronautical Combustor: Aerothermal Field and Metal Temperature
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer
,
Oslo, Norway
,
June 11–15
.
15.
He
,
L.
, and
Fadl
,
M.
,
2017
, “
Multi-scale Time Integration for Transient Conjugate Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
887
904
.
16.
Bertini
,
D.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2019
, “
Multiphysics Numerical Investigation of an Aeronautical Lean Burn Combustor
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Phoenix
,
AZ
,
June 17–21
.
17.
Paccati
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
,
Puggelli
,
S.
, and
Andreini
,
A.
,
2021
, “
Large-Eddy Simulation of a Model Aero-Engine Sooting Flame With a Multiphysics Approach
,”
Flow, Turbul. Combust.
,
106
(
4
), pp.
1329
1354
.
18.
Hermann
,
J.
,
Greifenstein
,
M.
,
Boehm
,
B.
, and
Dreizler
,
A.
,
2019
, “
Experimental Investigation of Global Combustion Characteristics in an Effusion Cooled Single Sector Model Gas Turbine Combustor
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
1025
1052
.
19.
Greifenstein
,
M.
,
Hermann
,
J.
,
Boehm
,
B.
, and
Dreizler
,
A.
,
2019
, “
Flame–Cooling Air Interaction in an Effusion-Cooled Model Gas Turbine Combustor at Elevated Pressure
,”
Exp. Fluids
,
60
(
1
), p.
10
.
20.
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2019
, “
Inclusion of Flame Stretch and Heat Loss in LES Combustion Model
,”
AIP Conf. Proc.
,
2201
(
1
), p.
020119
.
21.
ANSYS Inc.
,
2019
,
ANSYS Fluent Theory Guide, Release 19.3
.
22.
Menter
,
F.
,
2018
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,” pp.
27
37
.
23.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation κ-ω Turbulence Models for Aerodynamic Flows
,”
AIAA 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6–9
.
24.
Meneveau
,
C.
, and
Lund
,
T. S.
,
1997
, “
The Dynamic Smagorinsky Model and Scale-Dependent Coefficients in the Viscous Range of Turbulence
,”
Phys. Fluids
,
9
(
12
), pp.
3932
3934
.
25.
van Oijen
,
J. A.
,
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
ten Thije Boonkkamp
,
J. H.
, and
de Goey
,
L. P. H.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
26.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2015
, “
The Implementation of Five-Dimensional FGM Combustion Model for the Simulation of a Gas Turbine Model Combustor
,”
Proceedings of the ASME Turbo Expo
, Vol.
4A
, Montreal, Quebec, Canada, June 15–19.
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
, and
Thomas Bowman
,
C.
,
1999
, http://combustion.berkeley.edu/gri-mech/.
28.
Mazzei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Bellocci
,
L.
,
2016
, “
A 3D Coupled Approach for the Thermal Design of Aero-Engine Combustor Liners
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
.
29.
Bertini
,
D.
,
Mazzei
,
L.
,
Puggelli
,
S.
,
Andreini
,
A.
,
Facchini
,
B.
,
Bellocci
,
L.
, and
Santoriello
,
A.
,
2018
, “
Numerical and Experimental Investigation on an Effusion-Cooled Lean Burn Aeronautical Combustor: Aerothermal Field and Metal Temperature
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
.
30.
Paccati
,
S.
,
Bertini
,
D.
,
Puggelli
,
S.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2018
, “
Numerical Analyses of a High Pressure Sooting Flame With Multiphysics Approach
,”
Energy Procedia
,
148
, pp.
591
598
.
31.
Andreini
,
A.
,
da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2014
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011506
.
32.
Chanson
,
H.
,
2009
,
Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows
,
CRC Press
,
London, UK
.
33.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2021
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
.”
34.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
35.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), pp.
35
35
.
36.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.
37.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Meloni
,
R.
, and
Andreini
,
A.
,
2021
, “
Lean Blow-Out Prediction in an Industrial Gas Turbine Combustor Through a LES-Based CFD Analysis
,”
Combust. Flame
,
229
, p.
111391
.
You do not currently have access to this content.