Abstract

Shroudless rotor blades are state-of-the-art in modern high pressure turbines. Tip leakage flow has a crucial impact on turbine efficiency. Specific blade tip designs are a key factor to handle tip leakage losses by controlling tip leakage flow and its re-entry into the rotor passage. Comparative measurements of a cavity squealer type tip and a notch type tip have been conducted at the Large Scale Turbine Rig at Technical University of Darmstadt. The test rig has been operated at the blade tips design point. Experimental data have been acquired at rotor inlet and outlet as well as within the rotor passage. For cavity squealer tips, a tip leakage vortex develops at the suction side as the tip leakage flow is rolled-up and further mixed with main annulus flow. The tip leakage vortex determines the blockage of main annulus flow at the blade tip. The design of the suction side of the notch tip benefits a jet-like re-entry of tip leakage flow into the passage. Results are a tip leakage vortex system with smaller sized vortices and a more homogeneous mass flow redistribution in the outer annulus of the rotor. The zone of affected main annulus flow at the blade tip increases through the dominant tip leakage jet.

References

1.
European Commission, Directorate-General for Mobility and Transport, Directorate-General for Research and Innovation
,
2011
,
Flightpath 2050: Europe’s Vision for Aviation.
Policy/European Commission, Publications Office of the European Union
,
Luxembourg
.
2.
Wilhelm
,
M.
, and
Schiffer
,
H.-P.
,
2019
, “
Experimental Investigation of Rotor Tip Film Cooling at an Axial Turbine With Swirling Inflow Using Pressure Sensitive Paint
,”
Int. J. Turbomach. Propul. Power
,
4
(
3
), p.
23
.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
, p.
V002T14A001
, ASME Paper No. 93-GT-435.
4.
Kegalj
,
M.
,
Schmid
,
G.
,
Wartzek
,
F.
,
Schiffer
,
H.-P.
, and
Willer
,
L.
,
2012
, “
Experimental and Numerical Investigation of Tip Leakage Flow in a 1 1/2 Stage Turbine Rig Comparing Flat and Cavity-Squealer Tip Geometries
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
,
ASME Paper No. GT2012-69568
. .
5.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.
6.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2017
, “
Numerical Studies on Combustor–Turbine Interaction at the Large Scale Turbine Rig (LSTR)
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, p.
V02AT40A028
, ASME Paper No. GT2017-64504.
7.
Jung
,
J.
,
Kwon
,
O.
, and
Son
,
C.
,
2016
, “
An Investigation on Aerodynamics Loss Mechanism of Squealer Tips of a High Pressure Turbine Blade Using URANS
,”
Proceeding of the ASME Turbo Expo 2016
,
Seoul, Siuth Korea
,
June 13–17
, p.
V02DT44A027
, ASME Paper No. GT2016-57313.
8.
Krichbaum
,
A.
,
Werschnik
,
H.
,
Wilhelm
,
M.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2015
, “
A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions
,”
Proceedings of the ASME Turbo Expo 2015, Montreal
,
Quebec, Canada
,
June 15–19
, p.
V02AT38A032
, ASME Paper No. GT2015-43261.
9.
Eitenmüller
,
J.
,
Wilhelm
,
M.
,
Gresser
,
L.
,
Ostrowksi
,
T.
,
Leichtfuß
,
S.
,
Schiffer
,
H.-P.
,
Lyko
,
C.
, and
Naik
,
S.
,
2019
, “
Highly Accurate Delta Efficiency Measurements at the Large Scale Turbine Rig
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, p.
V02BT40A001
, ASME Paper No. GT2019-90294.
10.
Wilhelm
,
M.
,
2020
, “
Aerothermal Impact of Low Emission Combustion on the Turbine Blade Tip
,” Ph.D. dissertation,
Technical University of Darmstadt
,
Darmstadt
.
11.
Eitenmüller
,
J.
,
Ade
,
D.
,
Gründler
,
J.
,
Leichtfuß
,
S.
,
Schiffer
,
H.-P.
,
Lyko
,
C.
, and
Schmid
,
G.
,
2022
, “
Highly Accurate Loss Determination at the Large Scale Turbine Rig (LSTR) With Varying Rotor Tip Configurations
,”
25th International Society of Air Breathing Engines (ISABE) Conference
,
Ontario, Ottawa, Canada
,
Sept. 25–30
, Paper No. ISABE-2022-250.
12.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
, 3rd ed.,
Springer International Publishing AG
,
Cham
.
13.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
.
14.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
You do not currently have access to this content.