Abstract

Multi-channel casing (MC) shows promising results in controlling the performance of the radial turbines. It has neither movable parts nor complicated control mechanisms therefore it withstands higher thermal loads compared to the commonly used control systems such as the Variable Geometry Turbine (VGT). This advantage makes the MC applicable for a wider range of applications which is difficult to be covered with the common control systems. Replacing the traditional spiral casing with the MC affects the blade's vibration behavior. First, a 3D unsteady computational fluid dynamic (CFD) simulation is performed to investigate the influence of using MC on the turbine flow field for both full and partial admission operation. Second, a forced response analysis is performed based on the CFD result to calculate the blade vibration amplitude at different resonance crossings. Finally, an MC is manufactured and tested experimentally to validate the numerical study. The results show that ignoring the casing replacement effect on the blade vibration during the MC design phase led to a high vibration amplitude and consequently causes high cycle fatigue.

References

1.
Challand
,
S.
,
Dirschauer
,
E.
,
Ilievski
,
M.
,
Casey
,
M.
, and
Schatz
,
M.
,
2013
, “
A New Partial Admission Method for Turbocharger Turbine Control at Off-Design
,”
Turbo Expo
,
San Antonio, TX
, June 3–7, American Society of Mechanical Engineers.
2.
Fuhrer
,
C.
,
2014
, “
Simulation and Validation of an New Stator Design for Radial Turbines of Turbochargers
,”
Master Thesis
,
ITSM, University of Stuttgart
,
Stuttgart, Germany
.
3.
Ilievski
,
M.
,
Heidinger
,
F.
,
Fuhrer
,
C.
,
Schatz
,
M.
,
Vogt
,
D. M.
, and
Challand
,
S.
,
2015
, “
Experimental and Numerical Investigation of Partial Admission of a Radial Turbocharger Turbine for Improved off-Design Operation
,”
Turbo Expo
,
Montreal, Quebec, Canada
, June 15–19, American Society of Mechanical Engineers.
4.
Müller
,
T.
,
2014
, “
Construction of a MEDUSA Engine Arrangement and Its Experimental Examination on the Hot Gas Test Rig
,”
Master thesis
,
ITSM, University of Stuttgart
,
Stuttgart, Germany
.
5.
Schatz
,
M.
,
Seeger
,
F.
,
Vogt
,
D. M.
,
Koch
,
S.
,
Notheis
,
D.
,
Wagner
,
U.
, and
Koch
,
T.
,
2019
, “
Performance Evaluation of an IC-Engine With a Novel Partial Admission Turbocharger Concept
,”
Proceedings of the 19th Internationales Stuttgarter Symposium
,
Stuttgart, Germany
, pp.
757
771
.
6.
Hassan
,
A. F.
,
Fuhrer
,
C.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Multi-channel Casing Design for Radial Turbine Operation Control
,”
Proceedings of the13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
.
7.
Hassan
,
A. F.
,
Blackburne
,
J.
,
Kovachev
,
N.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Aerodynamic Excitation Analysis of a Radial Turbine Featuring a Multi-Channel Casing Design
,”
Proceedings of the ASME Turbo Expo.
,
Phoenix, AZ
, June 17–21.
8.
Hassan
,
A. F.
,
Müller
,
T.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2020
, “
Aerodynamic Damping Analysis for Radial Turbine Featuring a Multi-Channel Casing Design
,”
Turbo Expo: Power for Land, Sea, and Air
,
London, UK
.
9.
Hassan
,
A. F. A.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2021
, “
Performance and Losses Analysis for Radial Turbine Featuring a Multi-Channel Casing Design
,”
ASME J. Turbomach.
,
143
(
2
), p.
021003
.
10.
Heidinger
,
F.
,
Challand
,
S.
, and
Vogt
,
D. M.
,
2014
, “
Development and Commissioning of a New Turbocharger Test Facility
,”
Proceedings of the XXII Biannual Symposium on Measurement Techniques in Turbomachinery
,
Lyon
, France.
11.
Zablotskii
,
I. E.
,
Korostelev
,
Y. A.
, and
Sviblov
,
L. B.
,
1974
,
Contactless Measuring of Vibrations in the Rotor Blades of Turbines
,
Foreign Technology Div Wright-Patterson AFB
,
OH, USA
.
12.
Nieberding
,
W. C.
, and
Pollack
,
J. L.
,
1977
, “
Optical Detection of Blade Flutter
,”
ASME Turbo Expo
,
Philadelphia, PA
.
13.
Roth
,
H.
,
1980
, “
Vibration Measurements on Turbomachine Rotor Blades With Optical Probes
,”
Meas. Methods Rotating Components Turbomach.
,
1
(
1
), pp.
215
224
.
14.
Ballard
,
R.
,
Mccarty
,
P.
, and
Thompson
,
J. R.
,
1980
, “
A Noninterference Technique for Measurement of Turbine Engine Compressor Blade Stress
,”
Proceedings of the16th Joint Propulsion Conference
,
Hartford, CT
, June 30–July 2, p.
1141
.
15.
Watkins
,
W.
,
Robinson
,
W.
, and
Chi
,
R.
,
1985
, “
Noncontact Engine Blade Vibration Measurements and Analysis
,”
Proceedings of the 21st Joint Propulsion Conference
,
Monterey, CA
, July 8–11, p.
1473
.
16.
Watkins
,
W. B.
, and
Chi
,
R. M.
,
1989
, “
Noninterference Blade-Vibration Measurement System for Gas Turbine Engines
,”
J. Propuls. Power
,
5
(
6
), pp.
727
730
.
17.
Kawashima
,
T.
,
Iinuma
,
H.
,
Wakatsuki
,
T.
, and
Minagawa
,
N.
,
1992
, “
Turbine Blade Vibration Monitoring System
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air.
,
Cologne, Germany
.
18.
Kramer
,
E.
,
1997
, “
Optical Vibration Measuring System for Long, Freestanding LP Rotor Blades
,”
ABB Rev.
,
5
(
1
), pp.
1
10
.
19.
Heath
,
S.
, and
Imregun
,
M.
,
1998
, “
A Survey of Blade Tip-Timing Measurement Techniques for Turbomachinery Vibration
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
784
791
.
20.
Georgiev
,
V.
,
Holík
,
M.
,
Kraus
,
V.
,
Krutina
,
A.
,
Kubín
,
Z.
,
Liška
,
J.
, and
Poupa
,
M.
,
2011
, “
The Blade Flutter Measurement Based on the Blade Tip Timing Method
,”
Proceedings of the 15th WSEAS International Conference on Systems
,
Corfu Island, Greece
,
July 14–16
, pp.
14
16
.
21.
Losh
,
D.
,
Tappert
,
P.
,
John
,
S.
,
Mercadal
,
M.
,
Orlando
,
B.
, and
Wood
,
H.
,
2011
, “
Sensor Placement Utility
,”
User Manual
,
USA
.
22.
He
,
P.
,
Sun
,
Z.
,
Guo
,
B.
,
Chen
,
H.
, and
Tan
,
C.
,
2013
, “
Aerothermal Investigation of Backface Clearance Flow in Deeply Scalloped Radial Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021002
.
23.
Balasubramanian
,
R.
,
Barrows
,
S.
, and
Chen
,
J.
,
2008
, “
Investigation of Shear-Stress Transport Turbulence Model for Turbomachinery Applications
,”
Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 7–10, p.
566
.
24.
Cerdoun
,
M.
, and
Ghenaiet
,
A.
,
2015
, “
Analyses of Steady and Unsteady Flows in a Turbochargers Radial Turbine
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
229
(
2
), pp.
130
145
.
25.
Cerdoun
,
M.
, and
Ghenaiet
,
A.
,
2018
, “
Unsteady Behaviour of a Twin Entry Radial Turbine Under Engine Like Inlet Flow Conditions
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
93
111
.
26.
Müller
,
L.
, and
Verstraete
,
T.
,
2019
, “
Adjoint-Based Multi-Point and Multi-Objective Optimization of a Turbocharger Radial Turbine
,”
Int. J. Turbomach. Propuls. Power
,
4
(
2
), p.
10
.
27.
Netzhammer
,
S.
,
Vogt
,
D. M.
,
Kraetschmer
,
S.
,
Leweux
,
J.
, and
Koengeter
,
A.
,
2017
, “
Aerodynamic Excitation Analysis of Radial Turbine Blades due to Unsteady Flow From Vaneless Turbine Housings
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air.
,
Charlotte, NC
, June 26–30.
28.
Klaus
,
M.
,
2007
,
Flow-Induced Blade Vibrations in Radial Turbines With Bladed Volute Casing
,
Logos-Verlag
,
Germany
.
29.
Waldherr
,
C. U.
, and
Vogt
,
D. M.
,
2017
, “
A Comparison of two Reduced Order Methods for Probabilistic Mistuning Investigations
,”
Proceedings of the Gas Turbine India Conference
,
Bangalore, India
, Dec. 7–8.
30.
Mayorca
,
M. A.
,
2011
, “
Numerical Methods for Turbomachinery Aeromechanical Predictions
,”
PhD dissertation
,
Royal Institute of Technology
,
Stockholm, Sweden
.
31.
Mayorca
,
M. A.
,
Vogt
,
D. M.
,
Mårtensson
,
H.
,
Andersson
,
C.
, and
Fransson
,
T. H.
,
2012
, “
Uncertainty of Forced Response Numerical Predictions of an Industrial Blisk: Comparison with Experiments
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
, June 11–15, Vol. 44731, American Society of Mechanical Engineers, pp.
1537
1548
.
32.
Mayorca
,
M. A.
,
Vogt
,
D. M.
,
Mårtensson
,
H.
, and
Fransson
,
T. H.
,
2013
, “
Prediction of Turbomachinery Aeroelastic Behavior From a Set of Representative Modes
,”
ASME J. Turbomach.
,
135
(
1
), p.
011032
.
33.
Netzhammer
,
S.
,
Vogt
,
D. M.
,
Kraetschmer
,
S.
,
Leweux
,
J.
, and
Blackburne
,
J.
,
2019
, “
Reducing Blade Force Response in a Radial Turbine by Means of Jet Injection
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
, June 17–21.
34.
Hagelstein
,
D.
,
Hasemann
,
H.
, and
Rautenberg
,
M.
,
2000
, “
Coupled Vibration of Unshrouded Centrifugal Compressor Impellers. Part II: Computation of Vibration Behavior
,”
Int. J. Rotating Mach.
,
6
(
2
), pp.
115
128
.
35.
Fransson
,
T. H.
,
2012
, “
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,”
Proceedings of the 8th International Symposium
,
Stockholm, Sweden
,
Sept. 14–18, 1997
.
36.
Atassi
,
H. M.
,
2012
,
Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers
,
Springer Science & Business Media
,
Heidelberg, Germany
.
You do not currently have access to this content.