Abstract

Endwall heat transfer measurements have been acquired in a vane cascade over a range of turbulence conditions and Reynolds numbers using an array of small commercial infrared (IR) cameras. The linear cascade was tested over five inlet turbulence conditions ranging from low turbulence (0.7%) to high turbulence (17.4%) and three exit chord Reynolds numbers ranging from 500,000 to 2,000,000. The small commercial IR cameras made by Therm-App have a resolution of 384 by 288 pixels and were connected to individual smartphones to record the images. The cascade was modified with small zinc selenide windows to provide IR access for the cameras. The five cameras were calibrated against a constant temperature test plate and the output images were adjusted for the fisheye effect and thermal droop at the edges. The large-scale low-speed cascade, used in the endwall heat transfer study, was configured in a four-vane three full passage arrangement. The vane design includes a large leading and aft loading. This same cascade has been used in the acquisition of vane surface heat transfer distributions, vane suction surface heat transfer visualizations, and vane surface film cooling distributions. This paper includes comparisons with two large eddy simulation calculations, which were conducted prior to the acquisition of the heat transfer data. The influence of the secondary flows on the endwall heat transfer distributions, including the leading edge horseshoe vortex system, is particularly visible at lower turbulence levels and lower Reynolds numbers. However, at higher turbulence levels, the influence of secondary flows is less visible but the influence of Reynolds number and turbulence on transition can be discerned.

References

1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flow in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
2.
Klein
,
A.
,
1966
, ‘‘
Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines
,’’ BHRA T 1004.
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.
4.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
J. Eng. Power
,
102
(
2
), pp.
257
267
.
5.
Marchal
,
P.
, and
Sieverding
,
C. H.
,
1977
, ‘‘
Secondary Flows Within Turbomachinery Bladings
,’’ Secondary Flows in Turbomachines, AGARD CP 214.
6.
Langston
,
L. S.
,
2006
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
7.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of End-Wall Losses and Secondary Flows in Axial flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
8.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
J. Heat Transf.
,
110
(
4a
), pp.
862
869
.
9.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
10.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer, Part I—Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
.
11.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer, Part II—Time Mean Results
,”
ASME J. Turbomach.
,
128
(
4
), pp.
755
762
.
12.
York
,
R. E.
,
Hylton
,
L. D.
, and
Milelc
,
M. S.
,
1984
, “
An Experimental Investigation of Endwall Heat Transfer and Aerodynamics in a Linear Vane Cascade
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
159
167
.
13.
Harasgama
,
S. P.
, and
Wedlake
,
E. T.
,
1989
, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane Tested in the RAE Isentropic Light Piston Cascade
,”
ASME J. Turbomach.
,
113
(
3
), pp.
384
391
.
14.
Spencer
,
M. C.
,
Jones
,
T. V.
, and
Lock
,
G. D.
,
1996
, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
139
147
.
15.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
.
16.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
(
2
), pp.
210
220
.
17.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2005
, “
Effects of Catalytic and Dry Low NOx Combustor Turbulence on Endwall Heat Transfer Distributions
,”
ASME J. Heat Transfer.
,
127
(
4
), pp.
414
424
.
18.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
(
2
), pp.
305
313
.
19.
Varty
,
J. W.
, and
Ames
,
F. E.
,
2016
, “
Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels
,” ASME IMECE, Paper No. IMECE2016-67029.
20.
Varty
,
J. W.
,
Soma
,
L. W.
,
Ames
,
F. E.
, and
Acharya
,
S.
,
2017
, “
Vane Suction Surface Heat Transfer in Regions of Secondary Flows: The Influence of Turbulence Level, Reynolds Number, and the Endwall Boundary Condition
,”
ASME J. Turbomach.
,
140
(
2
), p.
021010
.
21.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), p.
041004
.
22.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2020
, “
Large Eddy Simulation of Bypass Transition in Vane Passage With Freestream Turbulence
,”
ASME J. Turbomach.
,
142
(
6
), p.
061002
.
23.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F. E.
,
2021
, “
Numerical Predictions of Turbine Cascade Secondary Flows and Heat Transfer With Inflow Turbulence
,”
ASME J. Turbomach.
,
143
(
12
), p.
121008
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
25.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
(
1
), pp.
173
183
.
You do not currently have access to this content.