Abstract

As firing temperatures in gas turbine engines continue to increase to achieve high efficiencies, components in the main gas path must be protected with cooling flows to ensure lifing targets are met. Manufacturing variations, however, influence the performance and life characteristics of components with the same nominal design. This study presents blade flow and overall cooling effectiveness measurements for nine true-scale, aero engine turbine blades with realistic manufacturing variations. Flow measurements were made through each blade at a fixed pressure ratio to determine flow variability between holes and between blades. Infrared thermography was used to capture spatially-resolved temperature measurements reported as overall effectiveness on the same nine blades under high-speed rotating conditions at the Steady Thermal Aero Research Turbine Laboratory. Thermal performance was correlated with blade flow performance indicating substantial blade-to-blade variations resulting from manufacturing differences. Measurements also indicated wide variations in cooling jet trajectories as well as overall cooling effectiveness. Finally, the observed blade-to-blade variations in effectiveness were scaled to engine conditions with lifing estimates showing some blades would be expected to last only half as long as others due to manufacturing variability.

References

1.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
2.
Reinman
,
G.
,
Ayer
,
T.
,
Davan
,
T.
,
Devore
,
M.
,
Finley
,
S.
,
Glanovsky
,
J.
,
Gray
,
L.
, et al
,
2012
, “
Design for Variation
,”
Qual. Eng.
,
24
(
2
), pp.
317
345
.
3.
Balevic
,
D.
,
Burger
,
R.
, and
Forry
,
D.
,
2004
, “
Heavy-Duty Gas Turbine Operating and Maintenance Considerations
,” GE Energy Report GER-3620K. p.
5
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
250
270
.
5.
Han
,
J.-C.
, and
Wright
,
L. M.
,
2006
, “Enhanced Internal Cooling of Turbine Blades and Vanes,”
Gas Turbine Handbook
,
R.
Dennis
, ed.,
Department of Energy, National Energy Technology Laboratory
,
Morgantown, WV
, p.
321
.
6.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
,
2014
, “Impingement Cooling in Gas Turbines,”
Impingement Jet Cooling in Gas Turbines
,
R.
Amano
and
B.
Sundén
, eds.,
WIT Press
,
Southampton, UK
, pp.
25
26
.
7.
Reyhani
,
M. R.
,
Alizadeh
,
M.
,
Fathi
,
A.
, and
Khaledi
,
H.
,
2013
, “
Turbine Blade Temperature Calculation and Life Estimation—A Sensitivity Analysis
,”
Propuls. Power Res.
,
2
(
2
), p.
158
.
8.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,” 2000-GT-0244, pp.
6
7
.
9.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
606
607
.
10.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
11.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of a Meter-Diffuser Offset on Shaped Film Cooling Hole Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
139
(
9
), p.
091012
.
12.
Sidwell
,
C. V.
,
2004
, “
On the Impact of Variability and Assembly on Turbine Blade Cooling Flow and Oxidation Life
,”
Doctoral Dissertation, Massachusetts Institute of Technology
,
Cambridge, MA
, pp.
1
60
.
13.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
Master's Thesis, Massachusetts Institute of Technology
,
Cambridge, MA
, pp.
1
73
.
14.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,” GT2014-25570, p.
5
.
15.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
,
Grover
,
E. A.
, and
Scire
,
J. J.
,
2019
, “
Scaling Sealing Effectiveness in a Stator—Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
16.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
, and
Carlson
,
A. E.
,
2021
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
143
(
4
), p.
041013
.
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
5
17
.
18.
Pratt
,
W. K.
,
2013
,
Introduction to Digital Image Processing
,
Wiley-Interscience
,
Hoboken, NJ
.
19.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
Energy Efficient Engine: High Pressure Turbine Test Hardware Detailed Design Report
,” NASA CR-167955.
Cincinnati, OH
, p.
47
.
You do not currently have access to this content.