Abstract

Converging slot hole is considered as a high-performance film hole with excellent film cooling effectiveness and relatively low aerodynamic loss. Previous studies on converging slot holes mainly focused on the film cooling effectiveness and heat transfer characteristics, whereas the discharge coefficient has not been fully understood, especially when the compressible effects cannot be ignored. This study numerically evaluated the effects of crossflows and compressibility on the discharge coefficient of the converging slot hole by comparing it with fan-shaped holes, and developed a promising prediction method for the discharge coefficient with both external and internal crossflows. The results show that the crossflow orientations and the compressible external/internal crossflows significantly influenced the discharge coefficients and flow fields of the converging slot hole. The trend of the discharge coefficient of the converging slot hole is obviously different from that of the fan-shaped holes because of the different flow conditions inside the holes. Moreover, the empirical correlations for the discharge coefficient of the converging slot hole based on the no-crossflow data were consistent with the numerical results, validating the numerical methods used in this study.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
2.
Hay
,
N.
, and
Lampard
,
D.
,
1995
, “
The Discharge Coefficient of Flared Film Cooling Holes
,” ASME Paper No. 95-GT-15.
3.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2001
, “
Large-Scale Testing to Validate the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
3
), pp.
593
600
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
5.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.
6.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
557
563
.
7.
Guo
,
L.
,
Yan
,
Y. Y.
, and
Maltson
,
J. D.
,
2011
, “
Numerical Study on Discharge Coefficients of a Jet in Crossflow
,”
Comput. Fluids
,
49
(
1
), pp.
323
332
.
8.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
9.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
,
1983
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
243
248
.
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
11.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flow Field Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
337
.
12.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
13.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), pp.
905
919
.
14.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
15.
Yao
,
Y.
, and
Zhang
,
J. Z.
,
2011
, “
Investigation on Film Cooling Characteristics From a Row of Converging Slot Holes on Flat Plate
,”
Sci. China Technol. Sci.
,
54
(
7
), pp.
1793
1800
.
16.
Yao
,
Y.
,
Zhang
,
J. Z.
, and
Wang
,
L. P.
,
2013
, “
Film Cooling on a Gas Turbine Blade Suction Side With Converging Slot-Hole
,”
Int. J. Therm. Sci.
,
65
, pp.
267
279
.
17.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2011
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
(
1
), p.
011020
.
18.
Yu
,
M. S.
, and
Xuan
,
D.
,
2022
, “
Influence of Converging Slot-Holes (Consoles) With Different Transition Surfaces on Film Cooling Performance
,”
J. Phys.: Conf. Ser.
,
2280
(
1
), p.
012019
.
19.
Huang
,
Y.
,
Wang
,
H.
,
Peng
,
C.
, and
Zhang
,
J. Z.
,
2022
, “
The Experimental Study of Converging Slot-Holes (Consoles) With Different Transition Surfaces
,”
J. Phys.: Conf. Ser.
,
2280
(
1
), p.
012032
.
20.
Liu
,
C. L.
,
Xie
,
G.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2020
, “
Effect of Internal Coolant Crossflow on the Film Cooling Performance of Converging Slot Hole
,”
Int. J. Therm. Sci.
,
154
, p.
106385
.
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
.
22.
ANSYS Fluent, Ver. 16.2
,
ANSYS Inc
.,
Canonsburg, PA
.
23.
Gupta
,
A. K.
,
Ramerth
,
D.
, and
Ramachandran
,
D.
,
2008
, “
Validation of CFD Predicted Discharge Coefficients for Thick Plate Orifices With Approach Flow Perpendicular and Inclined to the Orifice Axis
,” ASME Paper No. GT2008-50742.
24.
Forghan
,
F.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2010
, “
Discharge Coefficient of Expanded Exit Holes for Film Cooling of Turbine Blades
,”
J. Propul. Power
,
26
(
6
), pp.
1322
1325
.
25.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method for Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
,
36
(
6
), pp.
976
980
.
26.
Sasaki
,
M.
,
Takahara
,
K.
,
Sakata
,
K.
, and
Kumagai
,
T.
,
1976
, “
Study on Film Cooling of Turbine Blades: Experiments on Film Cooling With Injection Through Holes Near the Leading Edge
,”
Bull. JSME
,
19
(
137
), pp.
1344
1352
.
27.
Tillman
,
E. S.
, and
Jen
,
H. F.
,
1984
, “
Cooling Airflow Studies at the Leading Edge of a Film-Cooled Airfoil
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
214
221
.
You do not currently have access to this content.