Abstract

Computational fluid dynamics (CFD) is the standard tool in the turbomachinery industry to analyze and optimize internal cooling systems of turbine components, but the code applied has to be validated. This paper presents a combined experimental and numerical study on the flow field and heat transfer in a cooling system consisting of a three-pass serpentine with rib turbulators and trailing edge ejection. The cooling geometry is taken from a stator vane currently used in an industrial gas turbine and operates at a coolant inlet Reynolds number of 45,000. As an experimental technique, magnetic resonance velocimetry (MRV) was used to obtain the three-dimensional time-averaged velocity field of the isothermal flow. The measurements were conducted in a large-scale model and resulted in 3.2 million velocity vectors and measurement uncertainty of 6.1% of the bulk inlet velocity. The local wall heat transfer was measured in a separate experiment using thermochromic liquid crystals (TLC). These measurements yielded the distribution of the heat transfer coefficient on both the pressure and the suction side internal walls with a measurement uncertainty of 12%. The experimental data are used as a reference for the numerical study. In total, eight turbulence models are evaluated here, including one-equation, two-equation, algebraic and differential Reynolds stress models, and a scale adaptive simulation. The results show the differences between the velocity fields and the heat transfer coefficient distribution, allowing for the identification of the optimum turbulence model for this particular type of flow.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
3.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
4.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
(
2
), pp.
381
389
.
5.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1995
, “
Local Heat Transfer Distributions Near a Sharp 180 Turn of a Two-Pass Smooth Square Channel Using a Transient Liquid Crystal Image Technique
,”
J. Flow Visualization Image Process.
,
2
(
3
), pp.
285
297
.
6.
Schabacker
,
J.
,
Bölcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180° Bend
,”
Proceedings of the 1998 ASME International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, p.
V004T09A094
.
7.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2021
, “
Heat Transfer in a Rotating, Two-Pass, Variable Aspect Ratio Cooling Channel With Profiled V-Shaped Ribs
,”
ASME J. Turbomach.
,
143
(
8
), p.
081013
.
8.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45-Deg Rib Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091009
.
9.
Elfert
,
M.
,
Schroll
,
M.
, and
Förster
,
W.
,
2011
, “
PIV Measurement of Secondary Flow in a Rotating Two-Pass Cooling System With an Improved Sequencer Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031001
.
10.
Rau
,
G.
,
Çakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
368
375
.
11.
Abuaf
,
N.
, and
Kercher
,
D. M.
,
1994
, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,”
ASME J. Turbomach.
,
116
(
1
), pp.
169
177
.
12.
Wüstenhagen
,
C.
,
John
,
K.
,
Langner
,
S.
,
Brede
,
M.
,
Grundmann
,
S.
, and
Bruschewski
,
M.
,
2021
, “
CFD Validation Using In-Vitro MRI Velocity Data–Methods for Data Matching and CFD Error Quantification
,”
Comput. Biol. Med.
,
131
, p.
104230
.
13.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
14.
Bruschewski
,
M.
,
Scherhag
,
C.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
138
(
6
), p.
061005
.
15.
Baek
,
S.
,
Lee
,
S.
,
Hwang
,
W.
, and
Park
,
J. S.
,
2019
, “
Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage
,”
ASME J. Turbomach.
,
141
(
1
), p.
011012
.
16.
Benson
,
M. J.
,
Van Poppel
,
B. P.
,
Elkins
,
C. J.
, and
Owkes
,
M.
,
2019
, “
Three-Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry
,”
ASME J. Turbomach.
,
141
(
7
), p.
071011
.
17.
Borup
,
D. D.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2020
, “
Experimental Analysis of a Particle Separator Design With Full-Field Three-Dimensional Measurements
,”
ASME J. Turbomach.
,
142
(
10
), p.
101002
.
18.
Tsuru
,
T.
,
Ishida
,
K.
,
Fujita
,
J.
, and
Takeishi
,
K.
,
2019
, “
Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel
,”
ASME J. Turbomach.
,
141
(
6
), p.
061003
.
19.
Benson
,
M. J.
,
Bindon
,
D.
,
Cooper
,
M.
,
Todd Davidson
,
F.
,
Duhaime
,
B.
,
Helmer
,
D.
, and
Clark
,
J. P.
,
2022
, “
Detailed Velocity and Heat Transfer Measurements in an Advanced Gas Turbine Vane Insert Using Magnetic Resonance Velocimetry and Infrared Thermometry
,”
ASME J. Turbomach.
,
144
(
2
), p.
021009
.
20.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations
,”
Crystals
,
11
(
11
), p.
1332
.
21.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
1
), p.
011002
.
22.
Mayo
,
I.
,
Lahalle
,
A.
,
Gori
,
G. L.
, and
Arts
,
T.
,
2016
, “
Aerothermal Characterization of a Rotating Ribbed Channel at Engine Representative Conditions—Part II: Detailed Liquid Crystal Thermography Measurements
,”
ASME J. Turbomach.
,
138
(
10
), p.
101009
.
23.
Poser
,
R.
,
von Wolfersdorf
,
J.
,
Lutum
,
E.
, and
Semmler
,
K.
,
2008
, “
Performing Heat Transfer Experiments in Blade Cooling Circuits Using a Transient Technique With Thermochromic Liquid Crystals
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 4: Heat Transfer, Parts A and B
,
Berlin, Germany
,
June 9–13
, pp.
331
340
.
24.
Funazaki
,
K.
,
Ishizawa
,
K.
, and
Yamawaki
,
S.
,
1998
, “
Surface Heat Transfer Measurements of a Scaled Rib-Roughened Serpentine Cooling Passage by Use of a Transient Liquid Crystal Technique
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, p.
V004T09A086
.
25.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2020
, “
Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031015
.
26.
Funazaki
,
K.
,
Odagiri
,
H.
,
Horiuchi
,
T.
, and
Kazari
,
M.
,
2018
, “
Detailed Studies on the Flow Field and Heat Transfer Characteristics Inside a Realistic Serpentine Cooling Channel With a S-Shaped Inlet
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Oslo, Norway
,
June 11–15
, p.
V05BT13A010
.
27.
Brown
,
R. W.
,
Cheng
,
Y. C. N.
,
Haacke
,
E. M.
,
Thompson
,
M. R.
, and
Venkatesan
,
R.
,
2014
,
Magnetic Resonance Imaging: Physical Principles and Sequence Design
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
John
,
K.
,
Jahangir
,
S.
,
Gawandalkar
,
U.
,
Hogendoorn
,
W.
,
Poelma
,
C.
,
Grundmann
,
S.
, and
Bruschewski
,
M.
,
2020
, “
Magnetic Resonance Velocimetry in High-Speed Turbulent Flows: Sources of Measurement Errors and a New Approach for Higher Accuracy
,”
Exp. Fluids
,
61
(
2
).
29.
Bruschewski
,
M.
,
John
,
K.
,
Wüstenhagen
,
C.
,
Rehm
,
M.
,
Hadžić
,
H.
,
Pohl
,
P.
, and
Grundmann
,
S.
,
2021
, “
Commissioning of an MRI Test Facility for CFD-Grade Flow Experiments in Replicas of Nuclear Fuel Assemblies and Other Reactor Components
,”
Nucl. Eng. Des.
,
375
, p.
111080
.
30.
Nishimura
,
D. G.
,
Jackson
,
J. I.
, and
Pauly
,
J. M.
,
1991
, “
On the Nature and Reduction of the Displacement Artifact in Flow Images
,”
Magn. Reson. Med.
,
22
(
2
), pp.
481
492
.
31.
Schmidt
,
S.
,
John
,
K.
,
Kim
,
S. J.
,
Flassbeck
,
S.
,
Schmitter
,
S.
, and
Bruschewski
,
M.
,
2021
, “
Reynolds Stress Tensor Measurements Using Magnetic Resonance Velocimetry: Expansion of the Dynamic Measurement Range and Analysis of Systematic Measurement Errors
,”
Exp. Fluids
,
62
(
6
), pp.
1
17
.
32.
Axtmann
,
M.
,
von Wolfersdorf
,
J.
, and
Meyer
,
G.
,
2015
, “
Application of the Transient Heat Transfer Measurement Technique in a Low Aspect Ratio Pin Fin Cooling Channel
,”
ASME J. Turbomach.
,
137
(
12
), p.
121006
.
33.
Bruschewski
,
M.
,
Freudenhammer
,
D.
,
Buchenberg
,
W. B.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Estimation of the Measurement Uncertainty in Magnetic Resonance Velocimetry Based on Statistical Models
,”
Exp. Fluids
,
57
(
5
), pp.
1
13
.
34.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
35.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Proceeding of the 30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
36.
Menter
,
F. R.
,
1997
, “
Eddy Viscosity Transport Equations and Their Relation to the k-ɛ Model
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
876
884
.
37.
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flow
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), p.
269
.
38.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
39.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
40.
Apsley
,
D. D.
, and
Leschziner
,
M. A.
,
1998
, “
A New Low-Reynolds-Number Nonlinear Two-Equation Turbulence Model for Complex Flows
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
209
222
.
41.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: an Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
42.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2008
, “Development and Application of SST-SAS Turbulence Model in the DESIDER Project,”
Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
97
,
S. H.
Peng
,
and W.
Haase
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
261
270
.
43.
Wörz
,
B.
,
2018
, “
Numerische Modellierung turbulenter Strömung mit Wärmeübergang in einer konvektiv gekühlten turbinenschaufel” (Numerical Modelling of Turbulent Flow With Heat Transfer in a Convection Cooled Turbine Blade
,”
Doctoral Thesis
,
RWTH Aachen University
,
Germany
.
44.
Wüstenhagen
,
C.
,
Domnick
,
C.
,
John
,
K.
,
Bruschewski
,
M.
, and
Grundmann
,
S.
,
2022
, “
MRI Investigations of Internal Blade Cooling Flow and CFD Optimization Through Data Matching
,”
Proceedings of ASME Turbo Expo 2022 Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
.
45.
Lim
,
D. C.
,
Al-Kayiem
,
H. H.
, and
Kurnia
,
J. C.
,
2018
, “
Comparison of Different Turbulence Models in Pipe Flow of Various Reynolds Numbers
,”
AIP Conf. Proc.
,
2035
(
1
), p.
020005
.
AIP Publishing LLC
.
You do not currently have access to this content.