Abstract

This paper presents a detailed numerical investigation of a transonic centrifugal compressor to understand the mechanism causing its pressure rise characteristic rollover, which fundamentally impacts compressor stability. Distinct characteristic rollover behaviors at different compressor speeds are predicted and studied. It is found that the impeller characteristic rollover occurs at high blade tip Mach number (>1) conditions. It is the result of a combination of the inducer and exducer performance. The inducer is found to stall early, while the exducer is mostly a stable part maintaining the overall impeller stability. The overall impeller characteristic rolls over when the exducer’s performance deteriorates significantly, which happens at higher flow conditions toward high speed. This is due to the flow compressibility effect (density change). It shows that the flow density across the impeller increases with the blade tip Mach number. The increased density leads to a reduced exducer exit flow coefficient with higher workload and aerodynamic losses. Detailed analysis is carried out to understand the 1D and 3D flow mechanisms governing the inducer and exducer, hence the impeller characteristic.

References

1.
Dean
,
R. C.
,
1974
, “
The Fluid Dynamic Design of Advanced Centrifugal Compressors
,”
Lecture Notes
,
Von Karman Institute, Brussels
,
pp. 68-69
.
2.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.
3.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
217
.
4.
Hayashi
,
Y.
, and
Cao
,
T.
,
2023
, “
An Investigation of Non-Linear Surge Characteristic in a High-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
145
(
5
), p.
051010
.
5.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
6.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME Trans. ASME
,
77
(
4
), pp.
455
467
.
7.
Stenning
,
A.
, and
Kriebel
,
A.
,
1958
, “
Stall Propagation in a Cascade of Aerofoils
,” ASME Paper No. 57-SA-29.
8.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2012
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
9.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
10.
Vo
,
H.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
11.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2017
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME. J. Turbomach.
,
141
(
6
), p.
061010
.
12.
Lenneman
,
E.
, and
Howard
,
J. H. G.
,
1970
, “
Unsteady Flow Phenomena in Rotating Centrifugal Impeller Passages
,”
ASME J. Eng. Power
,
92
(
2
), pp.
65
72
.
13.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
468
474
.
14.
Yamada
,
K.
,
Furukawa
,
M.
,
Fukushima
,
H.
,
Ibaraki
,
S.
, and
Tomita
,
I.
,
2011
, “
The Role of Tip Leakage Vortex Breakdown in Flow Fields and Aerodynamic Characteristics of Transonic Centrifugal Compressor Impellers
,”
ASME Turbo Expo
,
Vancouver, Canada
,
June 6–10
.
15.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2018
, “
Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors
,”
Flow Turbul. Combust.
,
100
, pp.
705
719
.
16.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
750
758
.
17.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1977
, “
Influence of Inlet Flow Condition and Geometries of Centrifugal Vaneless Diffuser on Critical Flow Angles for Reverse Flow
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
98
103
.
18.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
19.
Cumpsty
,
N. A.
,
1989
, “Stall and Surge,”
Compressor Aerodynamics, Longman Scientific & Technical
,
John Wiley & Sons
,
Essex, UK
, pp.
376
377
.
20.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors
,
Cambridge University Press
,
Cambridge
.
21.
Hazby
,
H. R.
, and
Xu
,
L.
,
2009
, “
Role of Tip Leakage in Stall of a Transonic Centrifugal Impeller
,”
ASME Turbo Expo
,
Orlando, FL
,
June 8–12
.
22.
Tomita
,
I.
,
Ibaraki
,
S.
,
Furukawa
,
M.
, and
Yamada
,
K.
,
2013
, “
The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051020
.
23.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trebinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
24.
Cao
,
T.
,
Kanzaka
,
T.
,
Xu
,
L.
, and
Brandvik
,
T.
,
2021
, “
Tip Leakage Flow Instability in a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041012
.
25.
Ribaud
,
Y.
,
1987
, “
Experimental Aerodynamic Analysis Relative to Three High Pressure Ratio Centrifugal Compressors
,”
ASME Conference
, Paper No. 87-GT-153.
26.
Eckardt
,
D.
,
1976
, “
Detailed Flow Investigations Within a High-Speed Centrifugal Compressor Impeller
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
390
399
.
27.
Zheng
,
X.
, and
Liu
,
A.
,
2015
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p.
081007
.
28.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
02105
.
29.
Del Greco
,
A. S.
,
Biagi
,
F. R.
,
Sassanelli
,
G.
, and
Michelassi
,
V.
,
2007
, “
A New Slip Factor Correlation for Centrifugal Impellers in a Wide Range of Flow Coefficients and Peripheral Mach Numbers
,”
ASME Turbo Expo
,
Montreal, Canada
,
May 14–17
.
30.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
You do not currently have access to this content.