Abstract

Many investigations have defined Smith-type diagrams to guide the preliminary designs of conventional axial compressor stages on the choice of loading, flow coefficient, and degree of reaction. However, the recent development of unconventional axial compressor stages with tandem vanes has not been accompanied by similar studies aimed at tailoring existing correlations to the new type of vanes. While it is clear that axial compressor stages with tandem vanes operate in higher working ranges than conventional stages, it is less clear how the choice of reaction affects the aerodynamic behavior of such setups. For this purpose, this paper numerically investigates a low-speed axial compressor stage with different degrees of reaction for increasing loading levels. The metal angles of the unshrouded rotor and the shrouded stator are modified to ensure that the other design parameters of the stage, namely the work and flow coefficients, are kept constant, and that the influence of the degree of reaction is isolated. The investigation begins with Q2D simulations of the reference midspan aerofoils. It then extends to a 3D configuration, while maintaining the radial distribution of the aerofoil parameters from the reference 3D blades. New correlations are presented, aiming to show how the performance of the stage in terms of efficiency, total pressure losses, and loading coefficients of the vanes are influenced by the different degrees of reaction investigated. This paper, therefore, provides insight into the preliminary choices of parameters for the design of axial compressor stages with tandem vanes.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Howell
,
A.
,
1945
, “
Design of Axial Compressors
,”
Proc. Inst. Mech. Eng.
,
153
(
1
), pp.
452
462
.
3.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
ASME J. Basic Eng.
,
81
(
3
), pp.
387
397
.
4.
Vavra
,
M.
,
1960
,
Aero-Thermodynamics and Flow in Turbomachines
,
Robert E. Kreiger Publishing Company
,
Malabar, FL
.
5.
Horlock
,
J.
,
1973
,
Axial Flow Compressors
,
Robert E. Kreiger Publishing Company
,
Malabar, FL
.
6.
Casey
,
M.
,
1987
, “
A Mean Line Prediction Method for Estimating the Performance Characteristic of an Axial Compressor Stage
,”
Proceedings of the IMechE 1987, Turbomachinary Efficiency Prediction And Improvement
,
Cambridge, UK
, pp.
145
155
..
7.
Cumpsty
,
N.
,
1989
,
Compressor Aerodynamics
,
Pearson Education Limited
,
London, UK
.
8.
Farmakalides
,
C.
,
McKenzle
,
A.
, and
Elder
,
R.
,
1994
, “
The Effect of Reaction on Axial Flow Compressor Performance
,”
Turbo Expo: Power For Land, Sea, And Air
,
The Hague, Netherlands
, Vol. 78835, p. V001T01A143.
9.
Dickens
,
T.
, and
Day
,
I.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
10.
Chana
,
K.
, and
Miller
,
R.
,
2023
, “
The Effect of Reaction on Compressor Performance
,”
ASME J. Turbomach.
,
145
(
2
), p.
021012
.
11.
Yoon
,
S.
,
Selmeier
,
R.
,
Cargill
,
P.
, and
Wood
,
P.
,
2015
, “
Effect of the Stator Hub Configuration and Stage Design Parameters on Aerodynamic Loss in Axial Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091001
.
12.
Ortmanns
,
J.
,
2014
, “
Numerical Investigation of Axial Compressor Stages With Differing Degrees of Reaction
,”
Turbo Expo: Power For Land, Sea, And Air
,
Duesseldorf, Germany
, Vol. 45608, p. V02AT37A015.
13.
Gostelow
,
J.
,
1984
,
Cascade Aerodynamics
,
Pergamon Press
,
Oxford, UK
.
14.
Brent
,
J.
, and
Clemmons
,
D.
,
1974
. “
Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors
,” NASA Report No. CR-134713.
15.
Bammert
,
K.
, and
Staude
,
R.
,
1980
, “
Optimization for Rotor Blades of Tandem Design for Axial Flow Compressors
,”
J. Eng. Power
,
102
(
2
), pp.
369
375
.
16.
Tesch
,
A.
,
Lange
,
M.
,
Vogeler
,
K.
,
Ortmanns
,
J.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2014
, “
An Experimental Investigation of a Tandem Stator Flow Characteristic in a Low Speed Axial Research Compressor
,”
Turbo Expo: Power For Land, Sea, And Air
,
Duesseldorf, Germany
, Vol. 45608, p. V02AT37A029.
17.
Hopfinger
,
M.
, and
Gümmer
,
V.
,
2019
, “
Preliminary Design of a Three-Stage Low-Speed Research Compressor Using Tandem Vanes
,”
AIAA Propulsion And Energy 2019 Forum
,
Indianapolis, IN
, p.
3909
.
18.
Giannini
,
S.
,
Straccia
,
M.
, and
Gümmer
,
V.
,
2022
, “
Robust Optimization Used in the Redesign of a Low-Speed Compressor Tandem Stator
,”
25th ISABE Conference
,
Ottawa, Canada
.
19.
McGlumphy
,
J.
,
Ng
,
W.
,
Wellborn
,
S.
, and
Kempf
,
S.
,
2009
, “
Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021018
.
20.
Hergt
,
A.
, and
Siller
,
U.
,
2016
, “
About Subsonic Compressor Tandem Aerodynamics-A Fundamental Study
,”
International Symposium on Transport Phenomena And Dynamics of Rotating Machinery
,
Honolulu, HI
.
21.
Lieblein
,
S.
,
1960
, “
Incidence and Deviation-Angle Correlations for Compressor Cascades
,”
J. Basic Eng.
,
82
(
3
), pp.
575
584
.
22.
IGG/AutoGrid5 User’s Guide
.
NUMECA International
,
2013
.
23.
Ashcroft
,
G.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
High-Order Accurate Implicit Runge-Kutta Schemes for the Simulation of Unsteady Flow Phenomena in Turbomachinery
,”
Proceedings Fifth European Conference On Computational Fluid Dynamics ECCOMAS CFD
,
Lisbon, Portugal
.
24.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Proceedings Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD
,
Lisbon, Portugal
.
25.
Drela
,
M.
, and
Giles
,
M.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.
26.
Youngren
,
H.
,
1991
,
Analysis and Design of Transonic Cascades With Splitter Vanes
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
27.
Drela
,
M.
, A User’s Guide to MTFLOW 2.01. (MIT).
28.
Schneider
,
T.
, and
Kožulović
,
D.
,
2013
, “
Flow Characteristics of Axial Compressor Tandem Cascades at Large Off-Design Incidence Angles
,”
Turbo Expo: Power For Land, Sea, and Air
,
San Antonio, TX
, Vol. 55225, p. V06AT35A011.
29.
Heinichen
,
F.
,
Gümmer
,
V.
,
Plas
,
A.
, and
Schiffer
,
H.
,
2011
, “
Numerical Investigation of the Influence of Non-Axisymmetric Hub Contouring on the Performance of a Shrouded Axial Compressor Stator
,”
CEAS Aeronaut. J.
,
2
(
1
), pp.
89
98
.
You do not currently have access to this content.