Abstract

Due to the proximity of the first-stage gas turbine vanes to the combustor, coolant introduced to the combustor walls interacts with the endwall film coolant and changes the vane passage flow physics. Recent results show that combustor coolant contributes significantly to cooling the endwall and vane surfaces. In this paper, the traditional combustor-turbine interface was modified to improve overall cooling performance. The performance of this new injection cooling scheme on passage fluid dynamics and surface cooling is assessed. The first of this two-part paper reports detailed experimental tests that document secondary flows and coolant transport throughout the vane passage for four combustor coolant flowrates. The experimental facility imitates combustor coolant injection and engine-level turbulence and has a modified transition duct design, called the “close-coupled combustor-turbine interface.” The “impingement vortex” seen in previous studies with combustor cooling appears as the dominant secondary flow. It is observed in the present study over a wide range of flowrates, confirming its tie to the combustor coolant flowrate and not the combustor-turbine interface geometry. It was found, however, that the location and size of the impingement vortex are affected by coolant flowrate. Part II of this paper discusses the impact of the observed secondary flows on cooling vane passage surfaces.

References

1.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Prediction of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
862
869
.
4.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
5.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,”
AGARD 49th Propulsion and Energetics Panel Conference, CPP-214.
,
The Hague, The Netherlands
,
Mar. 28–Apr. 4
.
6.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1981
, “
Influence of Mach Number and Endwall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
J. Eng. Power
,
103
(
2
), pp.
257
263
.
7.
Bario
,
F.
,
LeBoeuf
,
F.
,
Onvani
,
A.
, and
Seddini
,
A.
,
1990
, “
Aerodynamics of Cooling Jets Introduced in the Secondary Flow of a Low Speed Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
3
), pp.
539
546
.
8.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
, “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Cincinnati, OH
,
May 24–27
,
p. V001T03A055
.
9.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
10.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2003
, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,”
Proceedings of the ASME Turbo Expo 2003, Volume 5: Turbo Expo 2003, Parts A and B
,
Atlanta, GA
,
June 16–19
, pp.
163
173
.
11.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
,
1973
, “
Investigation of the Aerodynamic Performance of Small Axial Turbines
,”
J. Eng. Power.
,
95
(
4
), pp.
326
332
.
12.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,” ASME Paper No. 75-WA/GT-13.
13.
Kopper
,
F. C.
,
Milanot
,
R.
, and
Vancot
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
.
14.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
.
15.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p. V003T01A007.
16.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p. V003T01A008.
17.
Schuepbach
,
P. P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J. J.
,
2010
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.
18.
El-Gabry
,
L. A.
,
Saha
,
R.
,
Fridh
,
J.
, and
Fransson
,
T.
,
2015
, “
Measurements of Hub Flow Interaction on Film Cooled Nozzle Guide Vane in Transonic Annular Cascade
,”
ASME J. Turbomach.
,
137
(
8
), p.
081004
.
19.
Alqefl
,
M. H.
,
Kim
,
Y. W.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2018
, “
Aerodynamic Measurements and Analysis in a First Stage Nozzle Guide Vane Passage With Combustor Liner Cooling, Slot Film Cooling and Endwall Contouring
,”
Proceedings of the ASME Turbo Expo 2018: Turbo-Machinery Technical Conference and Exposition, Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
, p. V02BT41A022.
20.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
21.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
.
22.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Non-Uniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.
23.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwall—Part 1: Aero-Dynamics
,”
ASME J. Turbomach.
,
143
(
12
), p.
121009
.
24.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls- Part 2: Thermal Measurements
,”
ASME J. Turbomach.
,
143
(
12
), p.
121010
.
25.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane
,”
ASME J. Turbomach.
,
143
(
3
), p.
031003
.
26.
Nawathe
,
K. P.
,
Zhu
,
R.
,
Lin
,
E.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Nozzle Passage Endwall Effectiveness Values With Various Combustor Coolant Flowrates—Part 1: Flowfield Velocity and Coolant Concentration Measurements
,”
ASME J. Turbomach.
,
143
(
4
), p.
041009
.
27.
Nawathe
,
K. P.
,
Zhu
,
R.
,
Lin
,
E.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Nozzle Passage Endwall Effectiveness Values With Various Combustor Coolant Flowrates—Part 2: Endwall and Vicinity Surface Effectiveness Measurements
,”
ASME J. Turbomach.
,
143
(
4
), p.
041010
.
28.
Burd
,
S. W.
,
1998
, “
Secondary Flow and Heat Transfer Control in Gas Turbine Inlet Nozzle Guide Vanes
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
29.
Oke
,
R.
,
2001
, “
Measurements in a Gas Turbine First Stage Nozzle Guide Vane Cascade With Film Cooling and Endwall Contouring
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
30.
Piggush
,
J. D.
,
2005
, “
An Experimental Investigation of Endwall Leakage Flows and Misalignment in Gas Turbine Nozzle Guide Vane
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
31.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
32.
Ayaskanta
,
A.
,
2013
, “
Experimental Investigation of the Effect of Engine Representative Combustor Exit Temperature Profile and Disc Cavity Leakage Flow on the Film Cooling of Contoured Hub Endwall of a High Pressure Gas Turbine Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
33.
Saxena
,
R.
,
2015
, “
Experimental Cascade Simulation of First Stage High Pressure Gas Turbine With Effects of Leakage Flow and Contouring on Endwall Film Cooling
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
34.
Alqefl
,
M. H.
,
2016
, “
An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane With Slot Film Cooling
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
35.
Alqefl
,
M. H.
,
2019
, “
Aero-Thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
36.
Nawathe
,
K. P.
,
2019
, “
Experiments on Film Cooling of Gas Turbine Vane Passage Surfaces: The Effects of Various Distributions of Combustor Coolant and Endwall Injection Coolant
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
37.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Salinas
,
D. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2021
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,”
ASME J. Turbomach.
,
143
(
6
), p.
061012
.
39.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1978
, “
The Calibration and Application of Five-Hole Probes
,”
Proceedings of the 24th International Instrumentation Symposium, Part 1
,
Albuquerque, NM
,
May 1–5
.
40.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
You do not currently have access to this content.