Abstract

Accurately assessing the robustness of the aerothermal performance of the blade tip is important considering that uncertainty is inevitable in the actual operation of turbines. However, the conventional uncertainty quantification methods are computationally inefficient for such an expensive black-box problem as turbine aerothermal performance prediction. In this paper, an efficient framework that is based on the combination of the sparse polynomial chaos expansion (PCE) and universal Kriging (UK) metamodel is applied to the uncertainty quantification of the effect of the conventional squealer tip and three different winglet squealer tips on the aerodynamic performance of the GE-E3 rotor blade tip. However, the inlet total pressure, inlet total temperature, and inlet flow angle are considered to flow condition uncertainty parameters and tip clearance is considered a geometrical uncertainty parameter. According to the results of the uncertainty quantification, in actual operation, although the setup of the winglet structure can still reduce the leakage flowrate, its effect will be much lower than predicted by deterministic calculations. The parameter that has the greatest influence on the uncertainty of the aerodynamic performance of the four tip structures is the tip clearance. Therefore, the geometric accuracy of the tip clearance should be strictly ensured in the turbine blade assembly and marching process. The uncertainty quantification calculations reveal that there is an antagonistic relationship between the pressure side cavity and suction side cavity on the aerodynamic performance uncertainty of the blade tip, which indicates a reasonable ratio of pressure side cavity and suction side cavity can make the fluctuation of the aerodynamic performance of the pressure side cavity vortex and suction side cavity vortex completely cancel, and thus design the winglet squealer tip with strong aerodynamic performance robustness.

References

1.
Kumar
,
R.
,
Kumar
,
V. S.
,
Butt
,
M. M.
, and
Sheik
,
N.
,
2020
, “
Thermo-Mechanical Analysis and Estimation of Turbine Blade Tip Clearance of a Small Gas Turbine Engine Under Transient Operating Conditions
,”
Appl. Therm. Eng.
,
179
, p.
115700
.
2.
Chol
,
S. M.
,
Bang
,
M.
,
Moon
,
H. K.
, and
Cho
,
H. H.
,
2021
, “
Wake Effects on Heat Transfer From a Turbine Blade Tip With Different Configurations and Its Corresponding Shroud
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105333
.
3.
Xie
,
G.
, and
Bengt
,
S.
,
2010
, “
Numerical Predictions of Augmented Heat Transfer of an Internal Blade Tip-Wall by Hemispherical Dimples
,”
Int. J. Heat Mass Transfer
,
53
(
25
), pp.
5639
5650
.
4.
Xie
,
Y.
,
Shi
,
D.
, and
Shen
,
Z.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer and Friction Performance for Turbine Blade Tip Cap With Combined Pin-Fin-Dimple/Protrusion Structure
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1120
1134
.
5.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, 93-GT-435
.
6.
Schaub
,
U. W.
,
Vlasic
,
E.
, and
Moustapha
,
S. H.
,
1993
, “
Effect of Tip Clearance on the Performance of a Highly Loaded Turbine Stage
,”
AGARD, Technology Requirements for Small Gas Turbines
, 11, p. SEE N 94-34431 10-07.
7.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2014
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME J. Turbomach.
,
136
(
4
), p.
041001
.
8.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy.
,
138
, pp.
167
184
.
9.
Papa
,
M.
,
Goldstein
R. J.
, and
Gori
,
F.
,
2003
, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
1
), pp.
90
96
.
10.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. C.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
11.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2012
, “
Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061036
.
12.
Cheon
,
J. H.
, and
Lee
,
S. W.
,
2015
, “
Tip Leakage Aerodynamics Over the Cavity Squealer Tip Equipped With Full Coverage Winglets in a Turbine Cascade
,”
Int. J. Heat Fluid Flow
,
56
, pp.
60
70
.
13.
Yan
,
X.
,
Huang
,
Y.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Investigations Into the Effect of Squealer–Winglet Blade Tip Modifications on Aerodynamic and Heat Transfer Performance
,”
Int. J. Heat Mass Transfer
,
103
, pp.
242
253
.
14.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.
15.
Yan
,
X.
,
Ye
,
M.
, and
He
,
K.
,
2019
, “
Influence of Wear Damages on Aerodynamic and Heat Transfer Performance in Squealer Tip Gap
,”
Appl. Therm. Eng.
,
159
, p.
113976
.
16.
Massini
,
M.
,
Miller
,
R. J.
, and
Howard
,
H. P.
,
2011
, “
A New Intermittent Aspirated Probe for the Measurement of Stagnation Quantities in High Temperature Gases
,”
ASME J. Turbomach.
,
133
(
4
), pp.
145
152
.
17.
Gamannossi
,
A.
,
Amerini
,
A.
,
Mazzel
,
L.
, and
Bacci
,
T.
,
2019
, “
Uncertainty Quantification of Film Cooling Performance of an Industrial Gas Turbine Vane
,”
Entropy
,
22
(
1
), p.
16
.
18.
Camevale
,
M.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES
,”
ASME J. Turbomach.
,
135
(
5
), p.
051021
.
19.
Wang
,
R.
,
Liu
,
X.
,
Hu
,
D.
,
Meng
,
F.
,
Li
,
D.
, and
Li
,
B.
,
2017
, “
Zone-Based Reliability Analysis on Fatigue Life of GH720Li Turbine Disk Concerning Uncertainty Quantification
,”
Aerosp. Sci. Technol.
,
70
, pp.
300
309
.
20.
Maria
,
C.
, and
Ahifeld
,
R.
,
2018
, “
Uncertainty Quantification of Leakages in a Multistage Simulation and Comparison With Experiments
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021110
.
21.
Beck
,
J. A.
,
Brown
,
J. M.
, and
Stater
,
J. C.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.
22.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
An Efficient Unsteady Adjoint Optimization System for Multistage Turbomachinery
,”
ASME J. Turbomach.
,
139
(
1
), p.
011003
.
23.
Fu
,
X.
, and
Zhang
,
X.
,
2018
, “
Failure Probability Estimation of Gas Supply Using the Central Moment Method in an Integrated Energy System
,”
Appl. Energy
,
219
, pp.
1
10
.
24.
Montomoli
,
F.
,
Carnevale
,
M.
,
D’Ammaro
,
A.
, and
Massini
,
M.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer International Publishing
,
New York
.
25.
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2017
, “
A Single Formulation for Uncertainty Propagation in Turbomachinery: SAMBA PC
,”
ASME J. Turbomach.
,
139
(
11
), p.
111007
.
26.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
.
27.
Bhosekar
,
A.
, and
Ierapetritou
,
M.
,
2018
, “
Advances in Surrogate Based Modeling, Feasibility Analysis, and Optimization: A Review
,”
Comput. Chem. Eng.
,
108
, pp.
250
267
.
28.
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2001
, “
A Stochastic Projection Method for Fluid Flow: I. Basic Formulation
,”
J. Comput. Phys.
,
173
(
2
), pp.
481
511
.
29.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids.
,
46
(
1
), pp.
362
368
.
30.
Karimi
,
M. S.
,
Salehi
,
S.
,
Raisee
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2019
, “
Probabilistic CFD Computations of Gas Turbine Vane Under Uncertain Operational Conditions
,”
Appl. Therm. Eng.
,
148
, pp.
754
767
.
31.
Daum
,
F.
, and
Huang
,
J.
,
2003
, “
Curse of Dimensionality and Particle Filters
,”
2003 IEEE Aerospace Conference Proceedings
, Paper No. 03TH8652.
32.
Schobi
,
R.
,
sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertain. Quantif.
,
5
(
2
), pp.
171
193
.
33.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.
34.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2021
, “
Effect of Casing Purge Flow on Heat Transfer and Cooling Performance of Blade Squealer Tip for a Gas Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A
,
236
(
2
), pp.
224
240
.
35.
Zhou
,
Z.
,
Chen
,
S.
, and
Wang
,
S.
,
2018
, “
Aerodynamic Optimisation of a Winglet-Cavity Tip in a High-Pressure Axial Turbine Cascade
,”
J. Aerospace Eng.
,
232
(
4
), pp.
649
663
.
36.
Huang
,
M.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Investigations on the Aerothermal Performance of the Turbine Blade Winglet Squealer Tip Within an Uncertainty Framework
,”
Aerosp. Sci. Technol
,
123
, p.
107506
.
37.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
38.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM. J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
39.
Cherry
,
D. G.
,
Gay
,
C. H.
, and
Lenahan
,
D. T.
,
1982
, “
Low Pressure Turbine Test Hardware Detailed Design Report
,”
National Aeronautics and Space Administration, Lewis Research Center
.
40.
De Maesschalck
,
C.
,
Lacor
,
C.
,
Paniagua
,
G.
,
Lavagnoli
,
S.
,
Remiot
,
A.
, and
Bricteux
,
L.
,
2017
, “
Performance Robustness of Turbine Squealer Tip Designs Due to Manufacturing and Engine Operation
,”
J. Propul. Power
,
33
(
3
), pp.
740
749
.
41.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
42.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2018
, “
Effect of Cooling Injection on the Leakage Flow of a Turbine Cascade With Honeycomb tip
,”
Appl. Therm. Eng.
,
133
, pp.
690
703
.
You do not currently have access to this content.