Abstract

The use of critical fuels such as heavy fuel oil (HFO) usually leads to deposits of combustion residues in the turbocharger turbine stage, foremost in the nozzle ring where flow channels can get partially or completely clogged. The resulting change in geometry is heavily asymmetrical and therefore induces low engine order (LEO) excitation, which may lead to resonant excitation of rotor blades and potentially to high cycle fatigue (HCF) failure. The accurate prediction of LEO excitation is computationally intensive especially, in the context of a probabilistic analysis. The current study investigates the suitability of using a simplified model that only contains the nozzle ring in the assessment of LEO excitation to reduce computational costs. The aerodynamic excitation is assessed from the circumferential variation of the nozzle ring outflow. The results obtained with this simplified model are compared to results of validated forced response analyses. Two deteriorated nozzle rings are used for validation purposes, a generic one having one passage blocked by 90%, and a digital replica of a real contaminated nozzle ring. It is shown that the simplified model is suitable for the qualitative prediction of the aerodynamic excitation if the contamination patterns feature sufficiently large differences and that the computational costs can be greatly reduced.

References

1.
Bréard
,
C.
,
Green
,
J. S.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
.
2.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Vogel
,
K.
,
Phillipsen
,
B. A.
, and
Hönisch
,
P.
,
2017
, “
Influence of Detailing on Predicted Aerodynamic Forcing of a Transonic Axial Turbine Stage and Forced-Response Prediction for Low-Engine-Order (LEO) Excitation
”. ASME Paper No. GT2017-64502.
3.
Kovachev
,
N.
,
Müller
,
T. R.
,
Waldherr
,
C. U.
, and
Vogt
,
D. M.
,
2019
, “
Prediction of Low-Engine-Order Excitation Due to a Non-Symmetrical Nozzle Ring in a Radial Turbine by Means of the Nonlinear Harmonic Approach
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121004
.
4.
di Mare
,
L.
,
Imregun
,
M.
,
Elliot
,
R.
, and
Smith
,
D.
,
2007
, “
A Numerical Study of High Pressure Turbine Forced Response in the Presence of Damaged Nozzle Guide Vanes
,”
Aeronaut. J.
,
111
(
3177
), pp.
751
757
.
5.
Gizzi
,
W.
,
Jung
,
M.
,
Cellbrot
,
P.
, and
Haueisen
,
V.
,
2007
, “
Contamination a Challenge for Turbochargers in HFO Operation
,”
CIMAC Congress
,
Vienna
.
6.
Vahdati
,
M.
,
Sayma
,
A.I.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Repsonse Prediction. Part 2: Case Studies
,”
J. Fluid. Struct.
,
14
(
1
), pp.
103
125
.
7.
Elliott
,
B.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2005
, “
Aeromechanical Design of Damped High Pressure Turbine Blades Subject to Low Engine Order Forcing
”. In
Evaluation, Control and Prevention of High Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles.
Meeting Proceedings RTO-MP-AVT-121, Paper 29, pp.
1
16
.
8.
Aschenbruck
,
J.
,
Meinzer
,
C. E.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Seume
,
J. R.
,
2013
, “
Regeneration-Induced Forced Response in Axial Turbines
,” ASME Paper No. GT2013-95431.
9.
Figaschewsky
,
F.
,
Giersch
,
T.
, and
Kühhorn
,
A.
,
2014
, “
Forced Response Prediction of An Axial Turbine Rotor With Regard to Aerodynamically Mistuned Excitation
,” ASME Paper No. GT2014-25896.
10.
Figaschewsky
,
F.
,
Giersch
,
T.
, and
Kühhorn
,
A.
,
2015
, “
Probabilistic Analysis of Low Engine Order Excitation Due to Geometric Perturbations of Upstream Nozzle Guide Vanes
,” ISABE 2015.
11.
Jöcker
,
M.
,
Kessar
,
A.
,
Fransson
,
T.
,
Kahl
,
G.
, and
Rehder
,
H.-J.
,
2003
, “
Comparison of Models to Predict Low Engine Order Excitation in a High Pressure Turbine Stage
,”
10th ISUAAAT Conference
,
Durham, NC
.
12.
Kessar
,
A.
,
Jöcker
,
M.
,
Fransson
,
T.
,
Rehder
,
H.-J.
, and
Kost
,
F.
,
2005
, “
Flow Measurements for Low Engine Order Excitations in a High Pressure Turbine Stage
,”
6th ETC Conference
,
Lille, France
.
13.
Meyer
,
M.
,
Parchem
,
R.
, and
Davison
,
P.
,
2011
, “
Prediction of Turbine Rotor Blade Forcing Due to In-Service Stator Vane Trailing Edge Damage
”. ASME Paper No. GT2011-45204.
14.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Fischer
,
M.
, and
Phillipsen
,
B. A.
,
2021
, “
On the Far-Field Boundary Condition Treatment in the Framework of Aerodynamical Computations Using Ansys Cfx
,”
IMECHE J. Power Energy
,
235
(
5
), pp.
1103
1118
.
15.
Mayorca
,
M. A.
,
De Andrade
,
J. A.
,
Vogt
,
D. M.
,
Mårtensson
,
H.
, and
Fransson
,
H.
,
2011
, “
Effect of Scaling of Blade Row Sectors on the Prediction of Aerodynamic Forcing in a Highly-Loaded Transonic Compressor Stage
,”
ASME. J. Turbomach.
,
133
(
2
), p.
021013
.
16.
Bathe
,
K.
,
2006
,
Finite Element Procedures
,
Prentice Hall, Upper Saddle River, NJ
.
You do not currently have access to this content.