Abstract

Reversible axial fans are widely used in industrial and tunnel ventilation systems, and a lot of research effort is spent in the design process of the blades shape and blades profile. The target is to achieve reasonable performances in both flow directions, but those are still below the levels of the corresponding nonreversible geometries. In this article, an alternative design solution for reversible axial fan is presented by adopting flexible blades instead of the rigid ones. Such design, inspired by the boat sails, could allow the blade to change its shape by passively adapting to the flow field, from a symmetrical blade profile to a not symmetric one, and thus adapting the curvature to the flow condition. In this article, a series of alternative materials and material distributions are analyzed and compared. The analysis is conducted by performing fluid–structure interaction simulations using stabilized finite elements formulations for both the fluid and the structure dynamics. Simulations are performed using the in-house built software fempar, which implements the Residual Based Variational MultiScale to model the Navier–Stokes equation, the total Lagrangian formulation for the nonlinear elastic solid, and the solid extension moving mesh technique to move the fluid mesh.

References

1.
Sheard
,
A.
, and
Daneshkhah
,
K.
,
2012
, “
The Conceptual Design of High Pressure Reversible Axial Tunnel Ventilation Fans
,”
Adv. Acoust. Vib.
,
2012
.
2.
Bolton
,
A.
,
1990
, “
Installation Effects in Fan Systems
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
204
(
3
), pp.
201
215
.
3.
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2014
, “
A Numerical Investigation Into the Aerodynamic Effect of Pressure Pulses on a Tunnel Ventilation Fan
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
228
(
3
), pp.
285
299
.
4.
Cory
,
W.
,
2005
,
Fans and Ventilation: a Practical Guide
, 1st ed.,
Elsevier Science
,
Amsterdam, The Netherlands
.
5.
Angelini
,
G.
,
Bonanni
,
T.
,
Corsini
,
A.
,
Delibra
,
G.
,
Tieghi
,
L.
, and
Volponi
,
D.
,
2018
, “
A Meta-Model for Aerodynamic Properties of a Reversible Profile in Cascade With Variable Stagger and Solidity
,”
Turbo Expo: Power for Land, Sea, and Air
,
Lillestrøm (Oslo), Norway
,
June 11–15
, Vol. 50985, American Society of Mechanical Engineers, p. V001T09A009.
6.
Angelini
,
G.
,
Bonanni
,
T.
,
Corsini
,
A.
,
Delibra
,
G.
,
Tieghi
,
L.
, and
Volponi
,
D.
,
2018
, “
On Surrogate-Based Optimization of Truly Reversible Blade Profiles for Axial Fans
,”
Designs
,
2
(
2
), p.
19
.
7.
Kincaid
,
K. C.
, and
MacPhee
,
D. W.
,
2020
, “
Numerical Fluid–Structure Interaction Analysis of a Wells Turbine With Flexible Blades
,”
ASME J. Energy Res. Technol.
,
142
(
8
), p. 081305.
8.
Barnabei
,
V. F.
,
Castorrini
,
A.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2020
, “
FSI Analysis and Simulation of Flexible Blades in a Wells Turbine for Wave Energy Conversion
,”
75th National ATI Congress (ATI 2020) – E3S Web of Conferences
,
Rome, Italy
,
Sept. 15–16
, p.
11008
.
9.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2019
, “
A Stabilized ALE Method for Computational Fluid–Structure Interaction Analysis of Passive Morphing in Turbomachinery
,”
Math. Models Methods Appl. Sci.
,
29
(
5
), pp.
967
994
.
10.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid-Structure Interaction: Methods and Applications
,
John Wiley & Sons
,
Chichester, UK
.
11.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2020
, “
Computational Analysis of Particle-Laden-Airflow Erosion and Experimental Verification
,”
Comput. Mech.
,
65
(
6
), pp.
1549
1565
.
12.
Castorrini
,
A.
,
Barnabei
,
V.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2019
, “
Strongly Coupled Fluid-Structure Interaction Simulation of a 3D Printed Fan Rotor
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
, Vol. 58547, American Society of Mechanical Engineers, p. V001T09A006.
13.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2020
, “
Simulation of the Deposit Evolution on a Fan Blade for Tunnel Ventilation
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p. 041010.
14.
Castorrini
,
A.
,
Barnabei
,
V. F.
,
Corsini
,
A.
,
Van der Spuy
,
S. J.
, and
Rispoli
,
F.
,
2020
, “
Unsteady Flow Simulation of an Axial Fan for Dry Cooling in a CSP Plant Using the Variational Multiscale Method
,
Proceedings of ASME Turbo Expo 2020
, Paper No. GT2020-15338.”
15.
Karypis
,
G.
, and
Kumar
,
V.
,
1997
,
METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Computer Science & Engineering (CS&E) Technical Reports, Technical Report; 97-061, University of Minnesota's Digital Conservancy, https://hdl.handle.net/11299/215346
.
16.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
,
Dener
,
A.
,
Eijkhout
,
V.
,
Gropp
,
W.
, and
Karpeyev
,
D.
,
2019
,
Technical Report ANL-95/11 - Revision 3.11, Argonne National Laboratory, http://www.mcs.anl.gov/petsc
17.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
18.
Bazilevs
,
Y.
,
Calo
,
V.
,
Cottrell
,
J.
,
Hughes
,
T.
,
Reali
,
A.
, and
Scovazzi
,
G.
,
2007
, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
1–4
), pp.
173
201
.
19.
Hughes
,
T. J.
, and
Sangalli
,
G.
,
2007
, “
Variational Multiscale Analysis: The Fine-Scale Green’s Function, Projection, Optimization, Localization, and Stabilized Methods
,”
SIAM J. Numer. Anal.
,
45
(
2
), pp.
539
557
.
20.
Hughes
,
T. J.
,
Oberai
,
A. A.
, and
Mazzei
,
L.
,
2001
, “
Large Eddy Simulation of Turbulent Channel Flows by the Variational Multiscale Method
,”
Phys. Fluids
,
13
(
6
), pp.
1784
1799
.
21.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Stein
,
K.
,
Tezduyar
,
T. E.
, and
Benney
,
R.
,
2004
, “
Automatic Mesh Update With the Solid-Extension Mesh Moving Technique
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
21–22
), pp.
2019
2032
.
23.
Van der Spuy
,
S. J.
,
1997
, “
The Design of a Low-Noise Rotor-Only Axial Flow Fan Series
,” Ph.D. thesis,
University of Stellenbosch
,
Stellenbosch
.
24.
Corsini
,
A.
,
Castorrini
,
A.
,
Boezi
,
M.
, and
Rispoli
,
F.
,
2015
, “
Numerical Study on Active and Passive Trailing Edge Morphing Applied to a Multi-MW Wind Turbine Section
,”
MARINE VI: Proceedings of the VI International Conference on Computational Methods in Marine Engineering
,
Rome, Italy
,
June 15–17
, pp.
106
118
.
You do not currently have access to this content.