Abstract

It is important to accurately estimate the impact of flow and geometric variations for engineering design and manufacture. In this paper, an efficient uncertainty quantification analysis framework based on the combination of Universal Kriging (UK) metamodels and sparse Polynomial Chaos Expansion (PCE) is proposed. A challenging analytical test function and an engineering test are considered to investigate the response performance of the UK-PCE method. Then, this method was applied to the uncertainty quantification on the aerodynamic and heat transfer performance of GE-E3 rotor blade squealer tip. Meanwhile, a global parameter sensitivity analysis using the Sobol Indice method is carried out to identify the key parameters for the aerothermal performance of the squealer tip. Wherein, the inlet total temperature is considered as flow condition uncertainty parameters and tip clearance and cavity depth are considered as geometrical uncertainty parameters. The results show that the UK-PCE method reduces the computational cost by more than 70% in comparison to the typical PCE method. Under the influence of the uncertain geometry and operating conditions, the heat flux of the squealer tip basically conforms to the normal distribution and the statistical mean value of it increased by 5.32% relative to the design value and the probability of it deviating from the design value by 5% is as high as 44.62%. The result of sensitivity analysis reveals that the uncertainty of the aerodynamic characteristics of the squealer tip is almost entirely caused by the tip clearance which accounts for 90.31% and 98.77% of the variance of the leakage flow rate and total pressure loss coefficient. And it is also a key variable for the uncertainty of the heat transfer performance considering that its variance indexes for tip heat flux and blade heat flux are 31.23% and 73.14%, respectively. Finally, the influence mechanisms of the uncertainty parameters on the aerothermal performance of the squealer tip are investigated by detailed flow and thermal field analysis.

References

1.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
3.
Denton
,
J. D.
,
1993
,
OSS Mechanisms in Turbomachines
,
American Society of Mechanical Engineers
,
New York, America
, 93-GT-435.
4.
He
,
K.
,
2017
, “
Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip
,”
Appl. Therm. Eng.
,
110
, pp.
630
647
.
5.
Wang
,
H.
,
Tao
,
Z.
,
Zhou
,
Z.
,
Zhao
,
G.
,
Han
,
F.
, and
Li
,
H.
,
2019
, “
An Investigation for the Turbine Blade Film Cooling Performance on the Suction Side Tip Region Under Rotating Condition
,”
Appl. Therm. Eng.
,
150
, pp.
864
874
.
6.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Kontrovitz
,
D. M.
,
Bunker
,
R. S.
, and
Prakash
,
C.
,
2004
, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
,
126
(
2
), pp.
221
228
.
7.
Jung
,
J. S.
,
Kim
,
I.
,
Joo
,
J. S.
, and
Lee
,
S. W.
,
2021
, “
Experimental Study on Aerodynamic Loss and Heat Transfer for Various Squealer Tips
,”
ASME J. Turbomach.
,
143
(
5
), p.
051002
.
8.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2008
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
Turbo Expo: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, GT2008-61215.
9.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
J. Propul. Power
,
28
(
3
), pp.
556
567
.
10.
Massini
,
M.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2011
, “
A New Intermittent Aspirated Probe for the Measurement of Stagnation Quantities in High Temperature Gases
,”
ASME J. Turbomach.
,
133
(
4
), pp.
145
152
.
11.
Dow
,
E. A.
, and
Wang
,
Q.
,
2014
, “
Optimal Design and Tolerancing of Compressor Blades Subject to Manufacturing Variability
,”
Proceedings of the 16th AIAA Non-Deterministic Approaches Conference
,
National Harbor, ML
,
June 13–17
, p.
1008
.
12.
Luo
,
J.
, and
Liu
,
F.
,
2018
, “
Statistical Evaluation of Performance Impact of Manufacturing Variability by an Adjoint Method
,”
Aerosp. Sci. Technol.
,
77
, pp.
471
484
.
13.
Fu
,
X.
, and
Zhang
,
X.
,
2018
, “
Failure Probability Estimation of Gas Supply Using the Central Moment Method in an Integrated Energy System
,”
Appl. Energy
,
219
, pp.
1
10
.
14.
Montomoli
,
F.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer International Publishing
,
New York
.
15.
Bornatico
,
R.
,
Hüssy
,
J.
,
Witzig
,
A.
, and
Guzzella
,
L.
,
2013
, “
Surrogate Modeling for the Fast Optimization of Energy Systems
,”
Energy
,
57
, pp.
653
662
.
16.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
.
17.
Bhosekar
,
A.
, and
Ierapetritou
,
M.
,
2018
, “
Advances in Surrogate Based Modeling, Feasibility Analysis, and Optimization: A Review
,”
Comput. Chem. Eng.
,
108
, pp.
250
267
.
18.
Bloom
,
N.
,
2009
, “
The Impact of Uncertainty Shocks
,”
Econometrica
,
77
(
3
), pp.
623
685
.
19.
Shi
,
W.
,
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2019
, “
Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole
,”
Aerospace
,
6
(
4
), p.
46
.
20.
Wang
,
C.
,
Sun
,
X.
, and
Zhang
,
J.
,
2019
, “
Uncertainty Analysis of Trench Film Cooling on Flat Plate
,”
Appl. Therm. Eng.
,
156
, pp.
562
575
.
21.
De Maesschalck
,
C.
,
Lacor
,
C.
,
Paniagua
,
G.
,
Lavagnoli
,
S.
,
Remiot
,
A.
, and
Bricteux
,
L.
,
2017
, “
Performance Robustness of Turbine Squealer Tip Designs due to Manufacturing and Engine Operation
,”
J. Propul. Power
,
33
(
3
), pp.
740
749
.
22.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.
23.
D’Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.
24.
Panizza
,
A.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine Nozzle Using Polynomial Chaos
,”
Turbo Expo: Power for Land, Sea, and Air
,
Montreal, Quebec
,
June 15–19
, V02CT45A009.
25.
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2001
, “
A Stochastic Projection Method for Fluid Flow: I. Basic Formulation
,”
J. Comput. Phys.
,
173
(
2
), pp.
481
511
.
26.
Mohammadi
,
A.
, and
Raisee
,
M.
,
2017
, “
Effects of Operational and Geometrical Uncertainties on Heat Transfer and Pressure Drop of Ribbed Passages
,”
Appl. Therm. Eng.
,
125
, pp.
686
701
.
27.
Karimi
,
M. S.
,
Salehi
,
S.
,
Raisee
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2019
, “
Probabilistic CFD Computations of Gas Turbine Vane Under Uncertain Operational Conditions
,”
Appl. Therm. Eng.
,
148
, pp.
754
767
.
28.
Daum
,
F.
, and
Huang
,
J.
,
2003
, “
Curse of Dimensionality and Particle Filters
,”
IEEE Aerospace Conference Proceedings
,
Montana
,
Mar. 8–15
, Paper No. 03TH8652.
29.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
ASME J. Thermophys. Heat. Transfer
,
17
(
3
), pp.
297
303
.
30.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
J. Heat Mass Transfer
,
115
, pp.
955
978
.
31.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade Tip and the Over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
, pp.
347
360
.
32.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Effects of the Casing Step Size on the Tip Leakage Flow Pattern and Heat Transfer Characteristic of Turbine Blade Squealer Tip
,”
Int. J. Therm. Sci.
,
174
, p.
107442
.
33.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
.
34.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
35.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
36.
Goodman
,
N. R.
,
1963
, “
Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (an Introduction)
,”
Ann. Math. Stat.
,
34
(
1
), pp.
152
177
.
37.
Oliver
,
M. A.
, and
Webster
,
R.
,
1990
, “
Kriging: A Method of Interpolation for Geographical Information Systems
,”
Int. J. Geogr. Inf. Syst.
,
4
(
3
), pp.
313
332
.
38.
Jeong
,
S.
,
Murayama
,
M.
, and
Yamamoto
,
K.
,
2005
, “
Efficient Optimization Design Method Using Kriging Model
,”
J. Aircr.
,
42
(
2
), pp.
413
420
.
39.
Van Beers
,
W. C.
, and
Kleijnen
,
J. P.
,
2003
, “
Kriging for Interpolation in Random Simulation
,”
J. Oper. Res. Soc.
,
54
(
3
), pp.
255
262
.
40.
Armstrong
,
M.
, “
Problems With Universal Kriging
,”
J. Int. Assoc. Math. Geol.
,
16
(
1
), pp.
101
108
.
41.
Schobi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertainty Quantif.
,
5
(
2
), pp.
171
193
.
42.
Cherry
,
D. G.
,
Gay
,
C. H.
, and
Lenahan
,
D. T.
,
1982
,
Low Pressure Turbine Test Hardware Detailed Design Report
,
National Aeronautics and Space Administration
,
Cleveland, OH
.
43.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
44.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
45.
Tao
,
Z.
,
Guo
,
Z.
,
Song
,
L.
, and
Li
,
J.
,
2021
, “
Uncertainty Quantification of Aero-Thermal Performance of a Blade Endwall Considering Slot Geometry Deviation and Mainstream Fluctuation
,”
ASME J. Turbomach.
,
143
(
11
), p.
111013
.
46.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2018
, “
Effect of Cooling Injection on the Leakage Flow of a Turbine Cascade With Honeycomb Tip
,”
Appl. Therm. Eng.
,
133
, pp.
690
703
.
You do not currently have access to this content.