Abstract

A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper, an evaluation method for computational fluid dynamics (CFD) simulations has been developed to quantify the loss generation based on entropy production in the flow field. A breakdown of losses caused by different mechanisms (such as skin friction, secondary flow, tip clearance vortex, and shock waves) is achieved by separating the flow field into different zones. Each zone is defined by the flow physics rather than by geometrical locations or empirical correlations, which makes the method a more general approach and applicable to different machine types. The method has been applied to both subsonic and transonic centrifugal compressors, where internal flow is complex due to the Coriolis acceleration and the curvature effect. An evaluation of loss decomposition is obtained at various operational conditions. The impact of design modification is also assessed by applying the same analysis to an optimized design.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines—The 1993 IGTI Scholar Lecture
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations Part I—A Turbulent Boundary Layer Flow
,”
Proceedings of the ASME International Gas Turbine Conference and Expo 1983
,
Phoenix, AZ
, Paper No. 83-GT-70.
3.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.
4.
Jin
,
Y.
,
Du
,
J.
,
Li
,
Z. Y.
, and
Zhang
,
H. W.
,
2017
, “
Second-Law Analysis of Irreversible Losses in Gas Turbines
,”
Entropy
,
19
(
9
), p.
470
.
5.
Zhao
,
Y. M.
, and
Sandberg
,
R. D.
,
2019
, “
Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, p. V02CT41A003.
6.
Pullan
,
G.
,
Denton
,
J. D.
, and
Curtis
,
E.
,
2006
, “
Improving the Performance of a Turbine With Low Aspect Ratio Stators by Aft-Loading
,”
ASME J. Turbomach.
,
128
(
3
), pp.
492
499
.
7.
Newton
,
P.
,
Copeland
,
C.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2011
, “
An Audit of Aerodynamic Loss in a Double Entry Turbine Under Full and Partial Admission
,”
Int. J. Heat Fluid Flow
,
33
(
2012
), pp.
70
80
.
8.
Denton
,
J. D.
, and
Pullan
,
G. P.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
, Paper No. GT 2012-69173.
9.
Yoon
,
S.
,
Vandeputte
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2016
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
10.
Johnson
,
M. W.
,
1978
, “
Secondary Flow in Rotating Bends
,”
J. Eng. Power
,
100
(
4
), pp.
553
560
.
11.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.
12.
Brun
,
K.
, and
Kurz
,
R.
,
2005
, “
Analysis of Secondary Flows in Centrifugal Impellers
,”
Int. J. Rotating Mach.
,
2005
(
1
), pp.
45
52
.
13.
Grübel
,
M.
,
Dovik
,
R. M.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2017
, “
A Methodology for a Detailed Loss Prediction in Low Pressure Steam Turbines
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p. V008T29A008.
14.
Sun
,
J.
,
2014
, “
Two-phase Eulerian Averaged Formulation of Entropy Production for Cavitation Flow
,”
Ph.D. thesis
,
University of Manitoba
,
Winnipeg, Canada
.
15.
Saito
,
S.
,
Furukawa
,
M.
,
Yamada
,
K.
,
Watanabe
,
K.
,
Matsuoka
,
A.
, and
Niwa
,
N.
,
2019
, “
Mechanisms and Quantitative Evaluation of Flow Loss Generation in a Multi-Stage Transonic Axial Compressor
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, p. V02AT39A008.
16.
Zangeneh
,
M.
,
1991
, “
A Compressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
,
13
(
5
), pp.
599
624
.
17.
Zangeneh
,
M.
,
1998
, “
On 3D Inverse Design of Centrifugal Compressor Impellers With Splitter Blades
,
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
, Paper No. 98-GT-507.
18.
Dawes
,
W. N.
,
1990
, “
A Comparison of Zero and One Equation Turbulence Modelling for Turbomachinery Calculations
,”
ASME, International Gas Turbine and Aeroengine Congress and Exposition, 35th
,
Brussels, Belgium
,
June 11–14
, p.
10
.
19.
Zaripov
,
D.
,
Li
,
R. F.
, and
Dushin
,
N.
,
2018
, “
Dissipation Rate Estimation in the Turbulent Boundary Layer Using High-Speed Planar Particle Image Velocimetry
,”
Exp. Fluids
,
60
(
1
), p.
18
.
20.
Eckardt
,
D.
,
1976
, “
Detailed Flow Investigations Within a High-Speed Centrifugal Compressor Impeller
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
390
402
.
21.
Eckardt
,
D.
,
1980
, “
Flow Field Analysis of Radial and Backswept Centrifugal Compressor Impellers, Part 1: Flow Measurements Using a Laser Velocimeter
,”
Performance Prediction of Centrifugal Pumps and Compressors, ASME 25th Annual International Gas Turbine Conference
,
New Orleans, LA
,
Mar. 9–13
, pp.
77
86
.
22.
Casey
,
M. V.
,
Dalbert
,
P.
, and
Roth
,
P.
,
1992
, “
The use of 3D Viscous Flow Calculations in the Design and Analysis of Industrial Centrifugal Compressors
,”
ASME, J. Turbomachinery
,
114
(
1
), pp.
27
37
.
23.
Zangeneh
,
M.
,
1993
, “
Inviscid/Viscous Interaction Method for 3D Inverse Design of Centrifugal Impellers
,”
ASME J. Turbomachinery
,
118
(
2
), pp.
385
393
.
24.
Li
,
H.
,
Su
,
X. R.
, and
Yuan
,
X.
,
2019
, “
Entropy Analysis of the Flat Tip Leakage Flow With Delayed Detached Eddy Simulation
,”
Entropy
,
21
(
1
), p.
21
.
25.
Japikse
,
D.
,
1987
, “
A Critical Evaluation of Three Centrifugal Compressors With Pedigree Data Sets: Part 5—Studies in Component Performance
,”
ASME J. Turbomach.
,
109
(
1
), pp.
1
9
.
26.
Krain
,
H.
, and
Hofmann
,
B.
,
1998
, “
Flow Physics in High Pressure Centrifugal Compressors
,” ASME FEDSM98-4853.
27.
Eisenlohr
,
G.
,
Krain
,
H.
,
Richter
,
F.
, and
Tiede
,
V.
,
2002
, “
Investigations of the Flow Through a High Pressure Ratio Centrifugal Impeller
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
, Paper No. GT-2002-30394, p.
9
.
28.
TURBOdesign1, Version 6.8.0
,
2019
,
Advanced Design Technology Ltd
.,
London, UK
.
29.
Hawthorne
,
W. R.
,
Wang
,
C.
,
Tan
,
C. S.
, and
McCune
,
J. E.
,
1984
, “
Theory of Blade Design for Large Deflections: Part 1—Two Dimensional Cascades
,”
ASME J. Eng. Gas Turbines Power
,
106
(2), pp.
346
353
.
30.
TURBOdesign Suite, Version 6.8.0
,
2019
,
Advanced Design Technology Ltd
.,
London, UK
.
31.
Zangeneh
,
M.
,
Amarel
,
N.
,
Daneshkhah
,
K.
, and
Krain
,
H.
,
2011
, “
Optimization of 6.2:1 Pressure Ratio Centrifugal Compressor Impeller by 3D Inverse Design
,”
Proceedings of ASME Turbo Expo 2011
,
Vancouver, BC, Canada
,
June 6–10
, pp.
2167
2177
.
You do not currently have access to this content.