Abstract

Nozzle guide vane (NGV) platforms often use complex cooling schemes to mitigate the ever-increasing thermal loads on endwall. Understanding the effect of advanced cooling schemes amid the highly complex three-dimensional secondary flow is vital to engine efficiency and durability. This study analyzes, experimentally and numerically, and describes the effect of coolant to mainstream blowing ratio, momentum ratio, and density ratio (DR) for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole purge cooling scheme. Nominal flow conditions were engine-representative and as follows: Maexit = 0.85, Reexit,Cax = 1.5 × 106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to the design condition and its upper extrema at M = 2.5 and 3.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR = 1.2, representing typical experimental neglect of coolant density, and DR = 1.95, representative of typical engine conditions. The results show that with a fixed coolant-to-mainstream blowing ratio, the density ratio plays a vital role in the coolant-mainstream mixing and the interaction between coolant and horseshoe vortex (HSV) near the vane leading edge. A higher density ratio leads to a better coolant coverage immediately downstream of the cooling holes but exposes the in-passage endwall near the pressure side. It also causes the in-passage coolant coverage to decay at a higher rate in the flow direction. From the results gathered, both density ratio and blowing ratio should be considered for accurate testing, analysis, and prediction of purge jet cooling scheme performance.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
862
869
.
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
6.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
J. Eng. Power
,
102
(
2
), pp.
257
267
.
7.
Boyle
,
R. J.
, and
Russell
,
L. M.
,
1990
, “
Experimental Determination of Stator Endwall Heat Transfer
,”
ASME J. Turbomach.
,
112
(
3
), pp.
547
558
.
8.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
.
9.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
(
2
), pp.
210
220
.
10.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Free-Steam Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
.
11.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
Proceedings of the IGTI
,
Birmingham, UK
,
June 10–13
, ASME Paper No. 96-GT-462.
12.
Spencer
,
M. C.
,
Jones
,
T. V.
, and
Lock
,
G. D.
,
1996
, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine-Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
139
147
.
13.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
14.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Measurements of Net Change in Heat Flux as a Result of Leakage and Steps on the Contoured Endwall of a Gas Turbine First Stage Nozzle
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
722
730
.
15.
Mayo
,
D. E.
,
Arisi
,
A.
,
Ng
,
W. F.
,
Li
,
Z.
,
Li
,
J.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2017
, “
Effect of Combustor-Turbine Platform Misalignment on the Aerodynamics and Heat Transfer of an Axisymmetric Converging Vane Endwall at Transonic Conditions
,”
Proceedings of the IGTI
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-65091.
16.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
17.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
.
18.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041007
.
19.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
,
1999
, “
The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
,
121
(
2
), pp.
200
208
.
20.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.
21.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.
22.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
23.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.
24.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
Proceedings of the IGTI
,
Munch, Germany
,
May 8–11
, ASME Paper No. 2000-GT-0214.
25.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
26.
Zhang
,
L.
, and
Moon
,
H. K.
,
2004
, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Back-Facing Step and Velocity Ratio
,”
Proceedings of the IMECE04
,
Anaheim, CA
,
Nov. 13–20
, ASME Paper No. IMECE2004-59117.
27.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,”
Proceedings of the IGTI
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75877.
28.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
29.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
749
757
.
30.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
31.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
32.
Chen
,
P.
,
Gao
,
H.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
Effects of Endwall 3D Contouring on Film Cooling Effectiveness of Cylindrical Hole Injections at Different Locations on Vane Endwall
,”
Proceedings of the IGTI
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75844.
33.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Film Cooling Effectiveness Distribution of Cylindrical Hole Injections at Different Locations on a Vane Endwall
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1
14
.
34.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
35.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
36.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
2004
, “
Simultaneous Heat Flux and Velocity Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
127
(
3
), pp.
502
506
.
37.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
38.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Cascade
,”
Proceedings of the IGTI
,
Amsterdam, Netherlands
,
June 3–6
, ASME Paper No. GT-2012-30523.
39.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
(
1
), pp.
57
62
.
40.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
41.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
42.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
43.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
44.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
45.
Loving
,
D. L.
, and
Katzoff
,
S.
,
1959
, “
The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization
,” NASA Report No. NASA-MEMO-3-17-59L.
46.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,”
Proceedings of the IGTI
,
Lillestrøm, Norway
,
June 7–11
, ASME Paper No. GT2018-75877.
You do not currently have access to this content.