Abstract

Modern gas turbines lean combustors allow to limit NOx pollutant emissions by controlling the flame temperature, while maintaining high turbine inlet temperatures. On the other hand, their adoption presents other challenges, especially concerning the combustor–turbine interaction. Turbine inlet conditions are generally characterized by severe temperature distortions and swirl degree, which, in turn, is responsible for very high turbulence intensities. Several past studies have focused on the description of the effects of these phenomena on the behavior of the high pressure stages of the turbine, both considering them as separated aspects, and, in very recent years, accounting for their combined impact. Nevertheless, very limited experimental results are available when it comes to evaluate the heat transfer coefficient (HTC) on the nozzle guide vane (NGV) external surface, since relevant temperature distortions present a severe challenge for the commonly adopted measurement techniques. The work presented in this paper was carried out on a non-reactive, annular, three-sector test rig, made by a combustor simulator and a NGV cascade. Making use of three real hardware burners of a Baker Hughes heavy-duty gas turbine, operated in similitude conditions, it can reproduce a representative swirling flow, with temperature distortions at the combustor–turbine interface plane. This test apparatus was exploited to develop an experimental approach to retrieve reliable HTC and adiabatic wall temperature distributions simultaneously, in order to overcome the known limitations imposed by temperature gradients on state-of-the-art methods for HTC calculation from transient tests. A non-cooled mockup of a NGV doublet, manufactured using low thermal diffusivity plastic material, was used for the tests, carried out using infra-red thermography with a transient approach. In the authors’ knowledge, this presents the first experimental attempt of measuring a NGV HTC in the presence of relevant temperature distortions and swirl.

References

1.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
,
1983
, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With Nonuniform Inlet Radial Temperature Profiles
,” NASA Technical Memorandum Report, AIAA Paper No. 83-1175.
2.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
3.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021010
.
4.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
, . ISSN 0889-504X.
5.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.
6.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.-F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
7.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2011
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part III: Impact of Hot-Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011008
.
8.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
9.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,” Proceedings of the ASME Turbo Expo Paper No. GT2012-69157.
10.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
11.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
12.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2010
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
13.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011008
.
14.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2013
, “
Design of a Non Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,” Proceedings of the ASME Turbo Expo Paper No. GT2013-95499.
15.
Bacci
,
T.
,
Lenzi
,
T.
,
Picchi
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2019
, “
Flow Field and Hot Streak Migration Through a High Pressure Cooled Vanes With Representative Lean Burn Combustor Outflow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041020
.
16.
Beard
,
P. F.
,
Adams
,
M. G.
,
Nagawakar
,
J. R.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Cardwell
,
D. N.
,
Povey
,
T.
, and
Chana
,
S.
,
2019
, “
The Lemcotec 11/2 Stage Film-Cooled HP Turbine: Design, Integration and Testing in the Oxford Turbine Research Facility
,” 2019 European Turbomachinery Conference Proceedings, Paper No. ETC2019-216.
17.
Adams
,
M. G.
,
Hall
,
B.
,
Povey
,
T.
, and
Chana
,
K. S.
,
2020
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031008
.
18.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,” ASME Conference Proceedings, Paper No. GT2004-53112.
19.
Pyliouras
,
S.
,
Schiffer
,
H. P.
,
Janke
,
A.
, and
Willer
,
L.
,
2012
, “
Effects of Non-Uniform Combustor Exit Flow on Turbine Aerodynamics
,” ASME Conference Proceedings, Paper No. GT2012-69372.
20.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
21.
Nealy
,
D. A.
,
Mihelic
,
M. S.
,
Hylton
,
L. D.
, and
Gladden
,
H. J.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
149
158
.
22.
Arts
,
T.
, and
Lambert de Rouvroit
,
M. L.
,
1992
, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
23.
Harvey
,
N. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1989
, “
Detailed Heat Transfer Measurements in Nozzle Guide Vane Passages in Linear and Annular Cascades in the Presence of Secondary Flows
,” AGARD PEP Paper No. 74B.
24.
Spencer
,
M. C.
,
Jones
,
T. V.
, and
Lock
,
G. D.
,
1996
, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
139
147
.
25.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
26.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
,
1991
, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
4
), pp.
843
850
.
27.
Moss
,
R. W.
, and
Oldfield
,
M. L. G.
,
1992
, “
Measurements of the Effects of Freestream Turbulence Length Scale on Heat Transfer
,” ASME Conference Proceedings, Paper No. 92-GT-244.
28.
VanFossen
,
G. J.
, and
Bunker
,
R. S.
,
2001
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
,
123
(
1
), pp.
140
146
.
29.
Thole
,
K. A.
,
Radmosky
,
R. W.
,
Wang
,
M. B.
, and
Kohli
,
A.
,
2002
, “
Elevated Freestream Turbulence Effects on Heat Transfer for a Gas Turbine Vane
,”
J. Heat Fluid Flow
,
23
(
2
), pp.
137
147
.
30.
Shaikh
,
F.
, and
Rosic
,
B.
,
2020
, “
Unsteady Phenomena at the Combustor-Turbine Interface
,” GPPS Proceedings, Paper No. GPPS-CH-2020-150.
31.
Shang
,
T.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Saxer
,
A. P.
,
1995
, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,” 31 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Paper No. AIAA 95-3042.
32.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part II: Influence of Inlet Temperature Profile on Blade Row and Shroud
,”
ASME J. Turbomach.
,
134
(
1
), p.
011007
.
33.
Shiau
,
C. C.
,
Chowdhury
,
N. H. K.
,
Yang
,
S. F.
,
Han
,
J. C.
,
Mirzamoghadam
,
A.
, and
Riahi
,
A.
,
2016
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness of Transonic Turbine Vane Suction Surface Using TSP Technique
,” ASME Conference Proceedings, Paper No. GT2016-56264.
34.
Munk
,
M.
, and
Prim
,
R. C.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
,
33
(
5
), pp.
137
144
.
35.
Cubeda
,
S.
,
Bacci
,
T.
,
Mazzei
,
L.
,
Salvadori
,
S.
,
Facchini
,
B.
,
Fiorineschi
,
L.
, and
Volpe
,
Y.
,
2020
, “
Design of a Non-Reactive Warm Rig With Lean-Premix Combustor Swirlers and Film-Cooled First Stage Nozzles
,” ASME Conference Proceedings, Paper No. GT2020-14186.
36.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Flowfield and Temperature Profiles of a Combustor Simulator Dedicated to Hot Streaks Generation
,” Proceedings of the ASME Turbo Expo, Paper No. GT2015-42217.
37.
Bacci
,
T.
,
Picchi
,
A.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Innocenti
,
L.
,
2021
, “
Effect of Surface Roughness and Inlet Turbulence Intensity on a Turbine Nozzle Guide Vane External Heat Transfer: Experimental Investigation on a Literature Test Case
,”
ASME J. Turbomach.
,
143
(
4
), p.
041006
.
38.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
39.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2016
, “
Improved Methodologies for Time-Resolved Heat Transfer Measurements, Demonstrated on an Unshrouded Transonic Turbine Casing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111007
.
40.
Holman
,
J. P.
,
1992
,
Heat Transfer
,
McGraw-Hill
,
London
.
You do not currently have access to this content.