Abstract

Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat-resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by the pressure-sensitive paint (PSP) technique. The test blade has five rows of chevron film holes on the pressure side, three rows of cylindrical film holes on the leading edge, and three rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12, and 0.36) and three mass flux ratios (MFR1, MFR2, and MFR3). The results show that the increase of mass flux ratio leads to a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads to a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.

References

1.
Bunker
,
R. S.
,
2017
, “Evolution of Turbine Cooling,” ASME Paper No. GT2017-63205.
2.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
1
10
.
3.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
4.
Rhee
,
D. H.
,
Lee
,
Y. S.
, and
Cho
,
H. H.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes
,”
ASME
Paper No. GT2002-30168
.
5.
Ye
,
L.
,
Liu
,
C.-L.
,
Zhu
,
H.-R.
, and
Luo
,
J.-X.
,
2019
, “
Experimental Investigations on the Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4818
.
6.
Kusterer
,
K.
,
Tekin
,
N.
,
Wüllner
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
Nekomimi Film Cooling Holes Configuration Under Conjugate Heat Transfer Conditions
,”
ASME
Paper No. GT2014-25845
.
7.
Kusterer
,
K.
,
Dickhoff
,
J.
,
Campana
,
N. T.
,
Sugimoto
,
T.
,
Tanaka
,
R.
,
Kazari
,
M.
, and
Bohn
,
D.
,
2016
, “
Automated Design Space Exploration of Advanced-Shaped Film Cooling Holes Using the SHERPA Algorithm
,”
ASME
Paper No. GT2016-56194
.
8.
Lee
,
C. P.
,
Brassfield
,
S. R.
, and
Bunker
,
R. S.
,
2008
, Chevron Film Cooled Wall, US Patent No. 7,328,580.
9.
Fu
,
Z.-Y.
,
Zhu
,
H.-R.
,
Liu
,
C.-L.
,
Wei
,
J.-S.
, and
Zhang
,
B.-L.
,
2018
, “
Investigation of the Influence of Inclination Angle and Diffusion Angle on the Film Cooling Performance of Chevron Shaped Hole
,”
J. Therm. Sci.
,
27
(
06
), pp.
580
591
.
10.
O'Brien
,
J. E.
, and
Capp
,
S. P.
,
1989
, “
Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked-Wheel Wake Generator
,”
ASME J. Turbomach.
,
111
(
10
), pp.
475
482
.
11.
Mhetras
,
S.
, and
Han
,
J. C.
,
2006
, “Effect of Unsteady Wake on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade,” AIAA Paper No. 2006-3403.
12.
Mahadevan
,
S.
,
Kutlu
,
B. F.
,
Golsen
,
M. J.
,
Verma
,
S. B.
, and
Kapat
,
J. S.
,
2015
, “
Experimental Study of Unsteady Wake Effect on a Film-Cooled Pitchwise-Curved Surface
,”
Int. J. Heat Mass Transfer
,
83
(
4
), pp.
118
135
.
13.
Funazaki
,
K.
,
Sasaki
,
Y.
, and
Tanuma
,
T.
,
1997
, “
Experimental Studies on Unsteady Aerodynamic Loss of a High-Pressure Turbine Cascade
,”
ASME
Paper No. 97-GT-52
.
14.
Golsen
,
M.
,
Ricklick
,
M.
, and
Kapat
,
J.
,
2011
, “Investigation on the Effects of Wake Rod to Film Cooling Hole Diameter Ratio in Unsteady Wake Studies,” AIAA Paper No. 2011-6096.
15.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using PSP Technique
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081701
.
16.
Narzary
,
D. P.
,
Gao
,
Z.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2007
, “
Effect of Unsteady Wake on Film-Cooling Effectiveness Distribution on a Gas Turbine Blade With Compound Shaped Holes
,”
ASME
Paper No. GT2007-27070
.
17.
Jiang
,
X.-H.
, and
Zhao
,
X.-L.
,
2004
, “
Effect of Unsteady Wake on Linear Cascade Film Cooling Efficiency
,”
J. Propul. Technol.
,
25
(
4
), pp.
311
315
.
18.
Chen
,
D.-W.
,
Zhu
,
H.-R.
,
Liu
,
C.-L.
,
Li
,
H.-T.
,
Li
,
B.-R.
, and
Zhou
,
D.-E.
,
2019
, “
Combined Effects of Unsteady Wake and Free-Stream Turbulence on Turbine Blade Film Cooling With Laid-Back Fan-Shaped Holes Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
133
(
6
), pp.
382
392
.
19.
Gao
,
Z. H.
,
Diganta
,
N.
, and
Han
,
J. C.
,
2008
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME
Paper No. GT2008-50286
.
20.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
227
237
.
21.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill Series in Mechanical Engineering
,
New York
.
22.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
23.
Li
,
J.
,
2011
,
Experimental and Theoretical Research on Gas Turbine Film Cooling
,
Tsinghua University
,
Beijing
.
You do not currently have access to this content.