Abstract

Centrifugal compressors employed in the oil and gas industry are operated at high gas pressure conditions and are used in a wide operation range. Accurate prediction of the rotating stall and the destabilizing aerodynamic force is one of the key technologies for these compressors. The aim of this study is to establish a method of accurately predicting the inception of rotating stall and its effect on shaft vibration. To achieve this, numerical investigations are carried out by unsteady flow and rotordynamic simulations. To validate the accuracy, an experiment is carried out at relatively high gas pressure conditions. In the first part of the study, the accuracy of compressor performance prediction is studied by steady computational fluid dynamics (CFD) simulation. It is found that by taking the wall roughness effect into account, the predicted performance shows good agreement with the experimental result. In the second part of the study, the accuracy of predicting the rotating stall is studied. In the experiment, two types of rotating stalls are measured. One is a multiple-cell stall induced in the vaneless diffuser and the other is a one-cell stall induced in the impeller. It is found that the simulation can predict the inception of the rotating stall with relatively high accuracy as the predicted results show good agreement with the experimental results in terms of cell count, rotation speed, pressure fluctuation level, and the effect on shaft vibration. Through this study, the effectiveness of simulation is validated for the stall and vibration prediction.

References

1.
Marshall
,
D. F.
, and
Sorokes
,
J. M.
,
2000
, “
A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics of Rotors
,”
Proceedings of the 29th Turbomachinery Symposium
,
Texas A&M University
.
2.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
750
758
.
3.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1977
, “
Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow
,”
J. Fluid. Eng.
,
99
(
1
), pp.
98
102
.
4.
Senoo
,
Y.
,
Kinoshita
,
Y.
, and
Ishida
,
M.
,
1977
, “
Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers
,”
J. Fluid. Eng.
,
99
(
1
), pp.
104
111
.
5.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
, and
Mori
,
Y.
,
1996
, “
Study of Vaneless Diffuser Rotating Stall Based on Two-Dimensional Inviscid Flow Analysis
,”
J. Fluid. Eng.
,
118
(
1
), pp.
123
127
.
6.
Ljevar
,
S.
,
de Lange
,
H.
, and
van Steenhoven
,
A. A.
,
2005
, “
Rotating Stall Characteristics in a Wide Vaneless Diffuser
,”
ASME Turbo Expo 2005
,
Reno-Tahoe, NV
, Paper No. GT2005-68445.
7.
Lee
,
K.-B.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan Part 2: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
.
8.
Dodds
,
J.
, and
Vahdati
,
M.
, “
Rotating Stall Observations in a High Speed Compressor—Part 2: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
9.
Mischo
,
B.
,
Jenny
,
P.
,
Mauri
,
S.
,
Bidaut
,
Y.
,
Kramer
,
M.
, and
Spengler
,
S.
, “
Numerical and Experimental FSI-Study to Determine Mechanical Stresses Induced by Rotating Stall in Unshrouded Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
140
(
11
), p.
111006
.
10.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2016
, “
A 3D Time-Accurate CFD Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
, Paper No. GT2016-57604.
11.
Yang
,
C.
,
Wang
,
W.
,
Zhang
,
H.
,
Li
,
Y.
,
Tong
,
D.
,
Yang
,
C.
, and
Yi
,
W.
,
2019
, “
Investigation of Stall Process in a Centrifugal Compressor With a Volute Under Transonic Conditions
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
, Paper No. GT2019-90713.
12.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2018
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vanned Diffuser
,”
ASME Turbo Expo 2018
,
Oslo, Norway
, Paper No. GT2018-75462.
13.
Filip
,
G.
, and
Grzegorz
,
L.
,
2018
, “
Three-Dimensional Vaneless Diffuser Rotating Stall Numerical Study
,”
ASME Turbo Expo 2018
,
Oslo, Norway
, Paper No. GT2018-76716.
14.
Vagnoli
,
S.
, and
Verstraete
,
T.
,
2014
, “
Numerical Investigation of Inlet Distortion on the Stall Inception of a Radial Compressor
,”
ASME Turbo Expo 2014
,
Düsseldurf, Germany
, Paper No. GT2014-25516.
15.
DeMore
,
D.
,
Maghsoudi
,
E.
,
Pacheco
,
J.
,
Sorokes
,
J.
,
Hutchinson
,
B.
,
Holmes
,
W.
,
Lobo
,
B.
, and
Vashistha
,
V.
,
2014
, “
Investigation of Efficient CFD Methods for Rotating Stall Prediction in a Centrifugal Compressor Stage
,”
ASME Turbo Expo 2014
,
Düsseldurf, Germany
, Paper No. GT2014-25516.
16.
Dodds
,
J.
, and
Vahdati
,
M.
, “
Rotating Stall Observations in a High Speed Compressor—Part 1: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulent Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
18.
Yoshida
,
T.
,
Sakai
,
N.
,
Matsumoto
,
A.
, and
Kitajima
,
Y.
,
2014
, “
Numerical Estimation of the Unsteady Force on Rotor Blades in a Partial Arc Admission Stage of an Axial Turbine
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
, Paper No. GT2014-26774.
19.
Miura
,
T.
, and
Sakai
,
N.
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.
20.
Frigne
,
P.
, and
Van den Braembussche
,
R.
,
1985
, “
A Theoretical Model for Rotating Stall in the Vaneless Diffuser of Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
507
513
.
21.
Kawakubo
,
T.
,
Numakura
,
R.
, and
Majima
,
K.
,
2008
, “
Prediction of Surface Roughness Effects on Centrifugal Compressor Performance
,”
ASME 2008 Fluids Engineering Division Summer Meeting
,
Florida
, pp.
1131
1138
.
22.
Benra
,
F. K.
,
Klapdor
,
V.
, and
Schulten
,
M.
,
2006
, “
Sensitivity Study on the Impact of Surface Roughness Due to Milling on the Efficiency of Shrouded Centrifugal Compressor Impellers
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
, Paper No. GT2006-90499.
23.
Cousins
,
W. T.
,
Yu
,
L.
,
Garofano
,
J.
,
Botros
,
B.
,
Sishtla
,
V.
, and
Sharma
,
O.
,
2014
, “
Test and Simulation of the Effects of Surface Roughness on a Shrouded Centrifugal Impeller
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
, Paper No. GT2014-25480.
24.
XLTRC2
,
2006
,
User’s Manual, Turbomachinery Laboratory
,
Mechanical Engineering Dept., Texas A&M University
,
College Station, TX
.
25.
Thorat
,
M. R.
, and
Childs
,
D. W.
,
2010
, “
Predicted Rotordynamic Behavior of a Labyrinth Seal as Rotor Surface Speed Approaches Mach 1
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112504
.
26.
Kleynhans
,
G. F.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Gas Turbines Power
,
119
(
4
), pp.
949
956
.
You do not currently have access to this content.