Abstract

Formation mechanisms for turbine roughness are manifold, including erosion, corrosion, deposition, and spallation or more recently additive manufacturing processes. Consequently, the resulting surfaces differ remarkably not only in roughness shape, height, and density but also in element thermal conductivity. Because the roughness elements extend into the boundary layer, their temperature distribution has a direct influence on the thermal boundary layer and thus on the resulting convective heat transfer. In the current study, heat transfer distributions along a flat plate with more than 20 deterministic rough surface topographies that differ in element eccentricity, height and density are measured. For each surface roughness, measurements are conducted using two different element thermal conductivities (0.2 W/(mK) and 30 W/(mK)), two pressure distributions, four Reynolds numbers between 3 × 105 and 7.5 × 105 and various inlet turbulence intensities in the range of 1.5 % to 8 %. The pressure distributions resemble a typical suction and pressure side, respectively. Results show a heat transfer increase of up to 60 % for the high thermal conductivity surfaces and up to 50 % for the low conductivity ones. While heat transfer on the high conductivity surfaces is always higher than on the low conductivity ones, the difference becomes smaller with decreasing element density.

References

1.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
.
2.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer–Part I: Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.
3.
Boyle
,
R. J.
, and
Stripf
,
M.
,
2009
, “
Simplified Approach to Predicting Rough Surface Transition
,”
ASME J. Turbomach.
,
131
(
4
), p.
041020
.
4.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Predicting Rough Wall Heat Transfer and Skin Friction in Transitional Boundary Layers: A New Correlation for Bypass Transition Onset
,”
ASME J. Turbomach
,
135
(
4
), p.
041021
.
5.
Albiez
,
H.
,
Gramespacher
,
C.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2020
, “
High-Resolution Measurements of Heat Transfer, Near-Wall Intermittency, and Reynolds-Stresses Along a Flat Plate Boundary Layer Undergoing Bypass Transition
,”
ASME J. Heat. Transfer.
,
142
(
4
), p.
042105
.
6.
Nikuradse
,
J.
,
1933
,
Strömungsgesetze in Rauhen Rohren
,
VDI-Verlag
,
Berlin
.
7.
Durbin
,
P. A.
,
Medic
,
G.
,
Seo
,
J. -M.
,
Eaton
,
J. K.
, and
Song
,
S.
,
2000
, “
Rough Wall Modification of Two-Layer K-ε
,”
J. Fluid. Eng.
,
123
(
1
), pp.
16
21
.
8.
Aupoix
,
B.
,
2014
, “
Roughness Corrections for the K-ω Shear Stress Transport Model: Status and Proposals
,”
J. Fluid. Eng.
,
137
(
2
), p.
4028122
.
9.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
10.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.
11.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
J. Fluid. Eng.
,
124
(
3
), pp.
671
677
.
12.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluid. Eng.
,
132
(
4
), p.
041203
.
13.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlić
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
ASME J. Fluid. Eng.
,
139
(
12
), p.
121201
.
14.
Forooghi
,
P.
,
Stripf
,
M.
, and
Frohnapfel
,
B.
,
2018
, “
A Systematic Study of Turbulent Heat Transfer Over Rough Walls
,”
Int. J. Heat. Mass. Transfer.
,
127
, pp.
1157
1168
.
15.
Mart
,
S. R.
,
McClain
,
S. T.
, and
Wright
,
L. M.
,
2012
, “
Turbulent Convection From Deterministic Roughness Distributions With Varying Thermal Conductivities
,”
ASME J. Turbomach.
,
134
(
5
), p.
051030
.
16.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen Zum Rauhigkeitsproblem
,”
Ingenieur-Archiv
,
7
(
1
), pp.
1
34
.
17.
Finson
,
M.
, and
Wu
,
P.
,
1979
, “
Analysis of rough wall turbulent heating with application to blunted flight vehicles
,”
17th Aerospace Sciences Meeting
,
New Orleans, LA
.
18.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1984
, “
A Discrete Element Prediction Approach for Turbulent Flow over Rough Surfaces
”. Mechanical and Nuclear Engineering Department,
Mississippi State University
, Report No. TFD-84-1.
19.
Aupoix
,
B.
,
1995
,
Modelling of Boundary Layer Flows Over Rough Surfaces
, Vol.
24
,
V.R.
Benzi
, ed.,
Springer Netherlands
,
Dordrecht
, pp.
16
20
.
20.
McClain
,
S. T.
,
2002
, “
A Discrete-Element Model for Turbulent Flow Over Randomly-Rough Surfaces
,”
Ph.D. thesis
,
Mississippi State University
.
21.
Stripf
,
M
,
2007
, “
Einfluss Der Oberflächenrauigkeit Auf Die Transitionale Grenzschicht An Gasturbinenschaufeln: Experimentelle Untersuchungen Und Entwicklung Eines Berechnungsverfahrens
,”
Ph.D. thesis
,
Universität Karlsruhe (TH)
,
Karlsruhe
.
22.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2011
, “
The Effect of Element Thermal Conductivity on Turbulent Convective Heat Transfer From Rough Surfaces
,”
ASME J. Turbomach.
,
133
(
2
), p.
021024
.
23.
Healzer
,
J. M
,
1974
, “
The Turbulent Boundary Layer on a Rough Porous Plate: Experimental Heat Transfer With Uniform Blowing
,” Ph.D. thesis,
Stanford University
,
CA
.
24.
Moffat
,
R. J.
,
Healzer
,
J. M.
, and
Kays
,
W. M.
,
1978
, “
Experimental Heat Transfer Behavior of a Turbulent Boundary Layer on a Rough Surface With Blowing
,”
ASME J. Heat. Transfer.
,
100
(
1
), pp.
134
142
.
25.
Ligrani
,
P. M.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1983
, “
Artificially Thickened Turbulent Boundary Layers for Studying Heat Transfer and Skin Friction on Rough Surfaces
,”
ASME J. Fluid. Eng.
,
105
(
2
), pp.
146
153
.
26.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1985
, “
Thermal Boundary Layers on a Rough Surface Downstream of Steps in Wall Temperature
,”
Boundary-Layer Meteorology
,
31
(
2
), pp.
127
147
.
27.
Ligrani
,
P. M.
, and
Moffat
,
R. J.
,
1986
, “
Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,”
J. Fluid. Mech.
,
162
, pp.
69
98
.
28.
Coleman
,
H. W.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1976
, “
Momentum and Energy Transport in the Accelerated Fully Rough Turbulent Boundary Layer
.”
Stanford University
, Report No. HMT-24.
29.
Coleman
,
H. W.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1977
, “
The Accelerated Fully Rough Turbulent Boundary Layer
,”
J. Fluid. Mech.
,
82
(
3
), pp.
507
528
.
30.
Coleman
,
H. W.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1981
, “
Heat Transfer in the Accelerated Fully Rough Turbulent Boundary Layer
,”
ASME J. Heat. Transfer.
,
103
(
1
), pp.
153
158
.
31.
Hosni
,
M. H
,
1989
, “
Measurement and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer
,” Ph.D. thesis,
Mississippi State University
,
Department of Mechanical and Nuclear Engineering
.
32.
Hosni
,
M.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
,
1991
, “
Measurements and Calculations of Rough-wall Heat Transfer in the Turbulent Boundary Layer
,”
Int. J. Heat. Mass. Transfer.
,
34
(
4
), pp.
1067
1082
.
33.
Hosni
,
M.
,
Coleman
,
H. W.
,
Garner
,
J. W.
, and
Taylor
,
R. P.
,
1993
, “
Roughness Element Shape Effects on Heat Transfer and Skin Friction in Rough-Wall Turbulent Boundary Layers
,”
Int. J. Heat. Mass. Transfer.
,
36
(
1
), pp.
147
153
.
34.
Chakroun
,
W
,
1992
, “
Experimental Investigation of the Effects of Acceleration on Flow and Heat Transfer in the Turbulent Rough-Wall Boundary Layer
,” Ph.D. thesis,
Mississippi State University
,
Department of Mechanical and Nuclear Engineering
.
35.
Chakroun
,
W.
, and
Taylor
,
R. P.
,
1993
, “
The Effects of Moderately Strong Acceleration on Heat Transfer in the Turbulent Rough-Wall Boundary Layer
,”
ASME J. Heat. Transfer.
,
115
(
3
), pp.
782
785
.
36.
Taylor
,
R. P.
,
Hosni
,
M. H.
,
Garner
,
J. W.
, and
Coleman
,
H. W.
,
1992
, “
Thermal Boundary Condition Effects on Heat Transfer in Turbulent Rough-Wall Boundary Layers
,”
Wärme - und Stoffübertragung
,
27
(
3
), pp.
131
140
.
37.
Gramespacher
,
C.
,
Albiez
,
H.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2019
, “
The Generation of Grid Turbulence with Continuously Adjustable Intensity and Length Scales
,”
Exp. Fluids
,
60
(
5
), p.
85
.
38.
Schiele
,
R.
,
Sieger
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Heat Transfer Investigations on a Highly Loaded, Aerothermally Designed Turbine Cascade
,”
12th International Symposium on Air Breathing Engines
,
Melbourne, Australia
, pp.
1091
1101
.
39.
Gnielinski
,
V.
,
1975
, “
Neue Gleichungen Für Den Wärme- Und Den Stoffübergang in Turbulent Durchströmten Rohren Und Kanälen
,”
Forschung Ingenieurwesen A
,
41
(
1
), pp.
8
16
.
40.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,”
Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; IGTI Scholar Award of Turbo Expo: Power for Land
, Sea, and Air, Vol.
2
. http://dx.doi.org/10.1115/93-gt-074
41.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
42.
Glasenapp
,
T.
,
Puetz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2017
, “
Assessment of Real Turbine Blade Roughness Parameters for the Design of a Film Cooling Test Rig
,”
Heat Transfer of Turbo Expo: Power for Land, Sea, and Air, Vol. 5A
. http://dx.doi.org/10.1115/gt2017-63088
43.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B.
, and
Bons
,
J. P.
,
2005
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
J. Fluid. Eng.
,
128
(
3
), pp.
579
586
.
44.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1970
,
Heat and Mass Transfer in Boundary Layers
, 2nd ed.,
International Textbook Company Ltd
,
London
.
45.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat. Transfer.
,
127
(
5
), pp.
472
485
.
46.
Simonich
,
J. C.
, and
Bradshaw
,
P.
,
1978
, “
Effect of Free-Stream Turbulence on Heat Transfer Through a Turbulent Boundary Layer
,”
ASME J. Heat. Transfer.
,
100
(
4
), pp.
671
677
.
47.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part II—Analysis of Results
,”
ASME J. Heat. Transfer.
,
105
(
1
), pp.
41
47
.
You do not currently have access to this content.