Abstract

This study describes the design, development, and testing of a miniature fast response aerodynamic probe (FRAP) with four sensors (4S), which are able to perform measurements in the unsteady three-dimensional flow field. Moreover, the calibration and first results with the newly developed probe are provided. The miniature FRAP-4S demonstrates a 3 mm tip diameter, offering a 25% reduction in diameter size, in comparison to a first-generation FRAP-4S, without any loss in terms of measurement bandwidth. The 3 mm outer casing of the probe is additively manufactured with a high-precision binder jetting technique. In terms of aerodynamic performance, the probe demonstrates high angular sensitivity up to ± 18 deg incidence angle in both directions. To evaluate the measurement accuracy of the newly developed FRAP-4S, measurements are performed at the Laboratory for Energy Conversion (LEC) in both a round axisymmetric jet and an one-and-a-half stage, unshrouded and highly loaded axial turbine configuration. Turbulence measurements performed with the miniature FRAP-4S are compared against hot-wire studies in round free-jets found in the literature. Good agreement in both trends but also absolute values is demonstrated. Moreover, the performance of the probe is compared against traditional instrumentation developed at LEC, namely, miniature pneumatic and FRAP-2S probes. The results indicate that the FRAP-4S, despite its larger size in comparison to the other probes tested, can resolve the main flow patterns, with the highest deviations occuring in the presence of highly skewed and sheared flow. Furthermore, the additively manufactured probe was proven to be robust after more than 50 hours of testing in the representative turbine environment configuration. Finally, it should be highlighted that the newly developed FRAP reduces measurement time by a factor of three in comparison to FRAP-2S, which directly translates to reduced development time and thus cost during the turbomachinery development phase.

References

1.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1036
1054
. 10.1088/0957-0233/11/7/318
2.
Sieverding
,
C.
,
Arts
,
T.
,
Dénos
,
R.
, and
Brouckaert
,
J. F.
,
2000
, “
Measurement Techniques for Unsteady Flows in Turbomachines
,”
Exp. Fluids
,
28
(
5
), pp.
285
321
. 10.1007/s003480050390
3.
Ainsworth
,
R. W.
,
Miller
,
R. J.
,
Moss
,
R. W.
, and
Thorpe
,
S. J.
,
2000
, “
Unsteady Pressure Measurement
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1055
1076
. 10.1088/0957-0233/11/7/319
4.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
New York
.
5.
Lepicovsky
,
J.
, and
Simurda
,
D.
,
2018
, “
Past Developments and Current Advancements in Unsteady Pressure Measurements in Turbomachines
,”
ASME J. Turbomach.
,
140
(
11
), p.
111005
. 10.1115/1.4040419
6.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2002
, “
Virtual Four Sensor Fast Response Aerodynamic Probe (FRAP)
,”
Proceedings of the 16th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Cambridge University
,
Cambridge, UK
,
Sept. 23–24
,
Paper No. MTT1602-A514
.
7.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1741
1750
. 10.1088/0957-0233/16/9/005
8.
Humm
,
H. J.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
,
1994
, “
Dynamic Response of Aerodynamic Probes in Fluctuating 3D Flows
,”
Proceedings of the 12th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Academy of Sciences of the Czech Republic
,
Prague, Czech Republic
,
Sept. 12–13
,
Paper No. MTT1294-A116
.
9.
Boufidi
,
E.
,
Alati
,
M.
,
Fontaneto
,
F.
, and
Lavagnoli
,
S.
,
2019
, “
Design and Testing of a Miniaturized Five-Hole Fast Response Pressure Probe With Large Frequency Bandwidth and High Angular Sensitivity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101010
. 10.1115/1.4044660
10.
Chasoglou
,
A. C.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2018
, “
A Novel Four-Sensor Fast-Response Aerodynamic Probe for Non-Isotropic Turbulence Measurement in Turbomachinery Flows
,”
J. Global Power Propul. Soc.
,
2
, pp.
362
375
. 10.22261/JGPPS.UALS07
11.
Heckmeier
,
F. M.
,
Iglesias
,
D.
, and
Breitsamter
,
C.
,
2019
, “
Unsteady Multi-Hole Probe Measurements of the Near Wake of a Circular Cylinder at Sub-Critical Reynolds Numbers
,”
Proceedings of the 21st STAB/DGLR Symposium
,
Darmstadt, Germany
,
Nov. 2–7
, pp.
643
652
.
12.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2016
, “
A Fast Response Miniature Probe for Wet Steam Flow Field Measurements
,”
Meas. Sci. Technol.
,
27
(
12
), p.
125901
. 10.1088/0957-0233/27/12/125901
13.
Lenherr
,
C.
,
2010
, “
High Temperature Fast Response Aerodynamic Probe
,”
Ph.D. thesis
,
Eidgenössische Technische Hochschule
,
Zürich, Switzerland
.
14.
Liu
,
Z.
, and
Paniagua
,
G.
,
2018
, “
Design of Directional Probes for High-Frequency Turbine Measurements
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
011601
. 10.1115/1.4037640
15.
Dominy
,
R. G.
, and
Hodson
,
H. P.
,
1993
, “
An Investigation of Factors Influencing the Calibration of Five-Hole Probes for Three-Dimensional Flow Measurements
,”
ASME J. Turbomach.
,
115
(
3
), pp.
513
519
. 10.1115/1.2929281
16.
Hall
,
B. F.
, and
Povey
,
T.
,
2017
, “
The Oxford Probe: An Open Access Five-Hole Probe for Aerodynamic Measurements
,”
Meas. Sci. Technol.
,
28
(
3
), p.
035004
. 10.1088/1361-6501/aa53a8
17.
Heneka
,
A.
,
1983
, “
Entwicklung und Erprobung Einer Keilsonde für Instationäre Dreidimensionale Strömungsmessungen in Turbomaschinen
,”
Ph.D. thesis
,
Universität Stuttgart
,
Stuttgart, Germany
.
18.
Ruck
,
G.
, and
Stetter
,
H.
,
1990
, “
Unsteady Velocity and Turbulence Measurements With a Fast Response Pressure Probe
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition
,
Brussels, Belgium
,
June 11–14
,
ASME Paper No. V001T01A079
.
19.
Gossweiler
,
C. R.
,
Herter
,
D.
, and
Kupferschmied
,
P.
,
1992
, “
Fast Response Aerodynamic Probe Measurements in a Turbulent Pipe Flow
,”
Proceedings of the 11th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Universität der Bundeswehr
,
München, Germany
,
Sept. 14–15
,
Paper No. MTT1192- A312
.
20.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
21.
E8, ASTM
,
2010
, “
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1
,”
ASTM International, Chap. Annu. B. ASTM Stand. 4, No. C.
22.
Simmons
,
W.
, and
Van
,
J. E.
,
1965
, “
Report on the Elevated-Temperature Properties of Stainless Steels
,”
American Society for Testing and Materials
,
Philadelphia, PA
,
Report No. DS5S1-EB
.
23.
Davis
,
J. R.
,
Mills
,
K. M.
, and
Lampman
,
S. R.
,
1990
,
Properties and Selection: Irons, Steels, and High-Performance Alloys
,
American Society for Metals International
,
Materials Park, OH
.
24.
Riemer
,
A.
,
Leuders
,
S.
,
Thöne
,
M.
,
Richard
,
H. A.
,
Tröster
,
T.
, and
Niendorf
,
T.
,
2014
, “
On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting
,”
Eng. Fract. Mech.
,
120
, pp.
15
25
. 10.1016/j.engfracmech.2014.03.008
25.
Verlee
,
B.
,
Dormal
,
T.
, and
Lecomte-Beckers
,
J.
,
2012
, “
Density and Porosity Control of Sintered 316L Stainless Steel Parts Produced by Additive Manufacturing
,”
Powder Metall.
,
55
(
4
), pp.
260
267
. 10.1179/0032589912Z.00000000082
26.
Gossweiler
,
C. R.
,
1993
, “
Sonden und Messsystem für Schnelle Aerodynamische Strömungsmessung mit Piezoresistiven Druckge-Bern
,”
Ph.D. thesis
,
Eidgenössische Technische Hochschule
,
Zürich, Switzerland
.
27.
Johansen
,
E. S.
,
Rediniotis
,
O. K.
, and
Jones
,
G.
,
2001
, “
The Compressible Calibration of Miniature Multi-Hole Probes
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
128
138
. 10.1115/1.1334377
28.
Kupferschmied
,
P.
,
1998
, “
Zur Methodik Zeitaufgelöster Messungen mit Strömungssonden in Verdichtern und Turbinen
,”
Ph.D. thesis
,
Eidgenössische Technische Hochschule
,
Zürich, Switzerland
.
29.
Xu
,
G.
, and
Antonia
,
R.
,
2002
, “
Effect of Different Initial Conditions on a Turbulent Round Free Jet
,”
Exp. Fluids
,
33
(
5
), pp.
677
683
. 10.1007/s00348-002-0523-7
30.
Iqbal
,
M. O.
, and
Thomas
,
F. O.
,
2007
, “
Coherent Structure in a Turbulent Jet via a Vector Implementation of the Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
571
, pp.
281
326
. 10.1017/S0022112006003351
31.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
. 10.1017/S0022112000003384
32.
Fellouah
,
H.
, and
Pollard
,
A.
,
2009
, “
The Velocity Spectra and Turbulence Length Scale Distributions in the Near to Intermediate Regions of a Round Free Turbulent Jet
,”
Phys. Fluids
,
21
(
11
), p.
115101
. 10.1063/1.3258837
33.
Romano
,
G.
,
2002
, “
The Effect of Boundary Conditions by the Side of the Nozzle of a Low Reynolds Number Jet
,”
Exp. Fluids
,
33
(
2
), pp.
323
333
. 10.1007/s00348-002-0439-2
34.
Quinn
,
W. R.
, and
Militzer
,
J.
,
1989
, “
Effects of Nonparallel Exit Flow on Round Turbulent Free Jets
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
139
145
. 10.1016/0142-727X(89)90008-8
35.
Dimotakis
,
P. E.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
, pp.
69
98
. 10.1017/S0022112099007946
36.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p.
065101
. 10.1063/1.2204060
37.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
. 10.1017/S0022112069000358
38.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Unsteady Flow Physics and Performance of a One-and 1/2-Stage Unshrouded High Work Turbine
,”
ASME J. Turbomach.
,
129
(
2
), pp.
348
359
. 10.1115/1.2447707
39.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2010
, “
Sensitivity of Turbine Efficiency and Flow Structures to Varying Purge Flow
,”
J. Propul. Power
,
26
(
1
), pp.
46
56
. 10.2514/1.44646
40.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
, and
Gier
,
J.
,
2012
, “
A Low Pressure Turbine With Profiled Endwalls and Purge Flow Operating With a Pressure Side Bubble
,”
ASME J. Turbomach.
,
134
(
6
), p.
061038
. 10.1115/1.4006303
41.
Lengani
,
D.
,
Paradiso
,
B.
, and
Marn
,
A.
,
2012
, “
A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and Its Application in a LP Turbine
,”
J. Therm. Sci.
,
21
(
1
), pp.
21
31
. 10.1007/s11630-012-0515-8
42.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
,
23
(
1
), pp.
227
234
. 10.2514/1.20022
43.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2008
, “
Control of Rotor Tip Leakage Through Cooling Injection From the Casing in a High-Work Turbine
,”
ASME J. Turbomach.
,
130
(
3
), p.
031014
. 10.1115/1.2777185
44.
Bauinger
,
S.
,
Behre
,
S.
,
Lengani
,
D.
,
Guendogdu
,
Y.
,
Heitmeir
,
F.
, and
Goettlich
,
E.
,
2017
, “
On Turbulence Measurements and Analyses in a Two-Stage Two-Spool Turbine Rig
,”
ASME J. Turbomach.
,
139
(
7
), p.
071008
. 10.1115/1.4035508
You do not currently have access to this content.