Abstract

One of the challenges in the design of a high-pressure turbine blade is that a considerable amount of cooling is required so that the blade can survive high temperature levels during engine operation. Another challenge is that the addition of cooling should not adversely affect blade aerodynamic performance. The typical flat tips used in designs have evolved into squealer form that implements rims on the tip, which has been reported in several studies to achieve better heat transfer characteristics as well as to decrease pressure losses at the tip. This paper demonstrates a numerical study focusing on a squealer turbine blade tip that is operating in a turbine environment matching the typical design ratios of pressure, temperature, and coolant blowing. The blades rotate at a realistic rpm and are subjected to a turbine rotor inlet temperature profile that has a nonuniform shape. For comparison, a uniform profile is also considered as it is typically used in computational studies for simplicity. The effect of tip cooling is investigated by implementing seven holes on the tip near the blade pressure side. Results confirm that the temperature profile nonuniformity and the addition of cooling are the drivers for loss generation, and they further increase losses when combined. Temperature profile migration is not pronounced with a uniform profile but shows distinct features with a nonuniform profile for which hot gas migration toward the blade pressure side is observed. The blade tip also receives higher coolant coverage when subject to the nonuniform profile.

References

1.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021009
. 10.1115/1.2950072
2.
El-Gabry
,
L. A.
, and
Ameri
,
A. A.
,
2011
, “
Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage
,”
ASME J. Turbomach.
,
133
(
3
), p.
031010
. 10.1115/1.4002412
3.
Wang
,
Z.
,
Wang
,
D.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2017
, “
Numerical Analysis on Effects of Inlet Pressure and Temperature Non-Uniformities on Aero-Thermal Performance of a HP Turbine
,”
Int. J. Heat Mass Transfer
,
104
, pp.
83
97
. 10.1016/j.ijheatmasstransfer.2016.08.018
4.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propulsion
,
5
(
1
), pp.
64
71
. 10.2514/3.23116
5.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1990
, “
Inlet Radial Temperature Redistribution in a Transonic Turbine Stage
,”
21st Fluid Dynamics, Plasma Dynamics and Lasers Conference
,
Seattle, WA
,
June 18–20
, AIAA Paper, No. 90-1543.
6.
Dorney
,
D. J.
, and
Schwab
,
J. R.
,
1996
, “
Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine
,”
ASME J. Turbomach.
,
118
(
4
), pp.
783
791
. 10.1115/1.2840934
7.
Smith
,
C. I.
,
Chang
,
D.
, and
Tavoularis
,
S.
,
2010
, “
Effect of Inlet Temperature Non-Uniformity on High-Pressure Turbine Performance
,”
ASME Turbo Expo
, Vol.
7
,
Glasgow, UK
,
June 14–18
, GT2010-22845.
8.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
. 10.1115/1.4002987
9.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part II-Combined Effects and Analytical Modeling
,”
ASME J. Turbomach.
,
115
(
4
), pp.
667
674
. 10.1115/1.2929301
10.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine–Part III: Impact of Hot Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011008
. 10.1115/1.4002996
11.
Kahveci
,
H. S.
,
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2013
, “
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects
,”
ASME J. Turbomach.
,
135
(
2
), p.
021027
. 10.1115/1.4006775
12.
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Mathison
,
R. M.
,
2012
, “
Fully Cooled Single Stage HP Transonic Turbine—Part II: Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer
,”
ASME J. Turbomach.
,
134
(
3
), p.
031011
. 10.1115/1.4002968
13.
Ong
,
J.
, and
Miller
,
R. J.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
. 10.1115/1.4003832
14.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
. 10.1115/1.4032924
15.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2012
, “
Effects of Inlet Temperature Uniformity and Nonuniformity on the Tip Leakage Flow and Rotor Blade Tip and Casing Heat Transfer Characteristics
,”
ASME J. Turbomach.
,
134
(
2
), p.
021001
. 10.1115/1.4003211
16.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
. 10.1115/1.4028796
17.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
”,
Technical Report, NASA-CR-168289, Contract NAS3-20643, US
.
18.
ANSYS Inc.
,
2017
,
ANSYS CFX Theory Guide, Release 18.2, Canonsburg, PA
.
19.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience with the SST Turbulence Model
,”
Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17
, pp.
625
632
.
20.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
. 10.1115/1.2952378
21.
Jiang
,
H.
,
He
,
L.
,
Zhang
,
Q.
, and
Wang
,
L.
,
2018
, “
On Scaling Method to Investigate High-Speed Over-Tip-Leakage Flow at Low-Speed Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062605
. 10.1115/1.4038619
22.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
. 10.1115/1.4035175
23.
Sakaoglu
,
S.
, and
Kahveci
,
H. S.
,
2020
, “
Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer
,”
ASME J. Turbomach.
,
142
(
2
), p.
021008
. 10.1115/1.4045466
24.
Sakaoglu
,
S.
, and
Kahveci
,
H. S.
,
2019
, “
Effect of Cavity Depth on Thermal Performance of a Cooled Blade Tip Under Rotation
,”
Int. J. Heat Mass Transfer
,
143
, p.
118561
. 10.1016/j.ijheatmasstransfer.2019.118561
25.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
J. Heat Transfer
,
125
(
4
), pp.
669
677
. 10.1115/1.1571849
26.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
27.
Zhou
,
C.
,
2015
, “
Effects of Endwall Motion on Thermal Performance of Cavity Tips With Different Squealer Width and Height
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1248
1258
. 10.1016/j.ijheatmasstransfer.2015.07.101
You do not currently have access to this content.