Abstract

The results presented in this paper are based on experimental investigations on a generic transonic low pressure turbine profile at high subsonic exit Mach numbers. Here, the flow on the suction side reaches a maximum isentropic Mach number of approximately 1.2 and features a large separation bubble in a transonic flow regime characterized by surface hot-film measurements. The measurements are supplemented by Schlieren images recorded with a high-speed camera at 19.2 kHz. A highly unsteady normal shock wave on the suction side is observable upstream of the trailing edge. It is interacting with laminar separated flow which is rarely documented in literature. The interaction of the normal shock with the boundary layer flow seems to amplifies the ongoing transition process over the separation bubble and the flow reattaches shortly downstream. A statistical analysis of the Schlieren images reveals characteristic low frequencies of the shock wave motions and a pulsation of the separation bubble. Additionally, the statistical information of the time-dependent signal from the surface hot-film sensors demonstrate the instabilities influencing the boundary layer linked to the unsteadiness in the main flow.

References

1.
Dolling
,
D. S.
,
2001
, “
Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?
,”
AIAA J.
,
39
(
8
), pp.
1517
1531
.
2.
Clemens
,
N. T.
, and
Narayanaswamy
,
V.
,
2014
, “
Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
469
492
.
3.
Bräunling
,
W.
,
Quast
,
A.
, and
Dietrichs
,
H.-J.
,
1988
, “
Detection of Separation Bubbles by Infrared Images in Transonic Turbine Cascades
,”
ASME J. Turbomach.
,
110
(
4
), p.
504
.
4.
Erengil
,
M. E.
, and
Dolling
,
D. S.
,
1993
, “
Physical Causes of Separation Shock Unsteadiness in Shock Wave/Turbulent Boundary-Layer Interactions
,”
24th Fluid Dynamics Conference
,
Orlando, FL
,
July 6–9
.
5.
Sartor
,
F.
,
Clement
,
M.
,
Sipp
,
D.
, and
Bur
,
R.
,
2013
, “
Dynamics of a Shock-Induced Separation in a Transonic Flow: A Linearized Approach
,”
43rd Fluid Dynamics Conference
,
San Diego, CA
,
June 24–27
.
6.
Dupont
,
P.
,
Haddad
,
C.
, and
Debiève
,
J. F.
,
2006
, “
Space and Time Organization in a Shock-Induced Separated Boundary Layer
,”
J. Fluid Mech.
,
559
, p.
255
.
7.
Dussauge
,
J.-P.
,
Dupont
,
P.
, and
Debiève
,
J.-F.
,
2006
, “
Unsteadiness in Shock Wave Boundary Layer Interactions With Separation
,”
Aerosp. Sci. Technol.
,
10
(
2
), pp.
85
91
.
8.
Graham
,
C. G.
, and
Kost
,
F.
,
1979
, “
Shock Boundary Layer Interaction on High Turning Transonic Turbine Cascades
,”
ASME 1979 International Gas Turbine Conference and Exhibit and Solar Energy Conference
, Vol.
79-GT-37
.
9.
Shiratori
,
T.
,
Matsushita
,
M.
, and
Noguchi
,
Y.
,
1997
, “Periodic Fluctuation of Shock Waves in Transonic Cascade Flows,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
Fransson
,
T. H.
, ed.,
Springer
,
Netherlands
.
10.
Agostini
,
L.
,
Larchevêque
,
L.
, and
Dupont
,
P.
,
2015
, “
Mechanism of Shock Unsteadiness in Separated Shock/Boundary-Layer Interactions
,”
Phys. Fluids.
,
27
(
12
), p.
126103
.
11.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
12.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High-Speed Cascade Wind-Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Genua, Italy
,
Oct. 24–25
.
13.
Bellhouse
,
B. J.
, and
Schultz
,
D. L.
,
1966
, “
Determination of Mean and Dynamic Skin Friction, Separation and Transition in Low-Speed Flow With a Thin-Film Heated Element
,”
J. Fluid Mech.
,
24
(
2
), pp.
379
400
.
14.
Oldfield
,
M. L. G.
,
Kiock
,
R.
,
Holmes
,
A. T.
, and
Graham
,
C. G.
,
1981
, “
Boundary Layer Studies on Highly Loaded Cascades Using Heated Thin Films and a Traversing Probe
,”
J. Eng. Power
,
103
(
1
), p.
237
.
15.
Pucher
,
P.
, and
Göhl
,
R.
,
1987
, “
Experimental Investigation of Boundary Layer Separation With Heated Thin-Film Sensors
,”
ASME J. Turbomach.
,
109
(
2
), pp.
303
309
.
16.
Kost
,
F.
,
Bräunling
,
W.
, and
Schüpferling
,
E.
,
1988
, “
Detection of Separation Bubbles by Heated Thin-Film Sensors in Transonic Turbine Cascades
,”
9th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
,
Oxford, UK
,
Mar. 21–22
.
17.
Hodson
,
H. P.
,
1983
, “
The Detection of Boundary-Layer Transition and Separation in High Speed Turbine Cascades
,”
7th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
,
Aachen, Germany
,
Sept. 21–23
.
18.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
,
1994
, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
,
116
(
3
), pp.
375
383
.
19.
Gomes
,
R. A.
,
Stotz
,
S.
,
Blaim
,
F.
, and
Niehuis
,
R.
,
2015
, “
Hot-Film Measurements on a Low Pressure Turbine Linear Cascade With Bypass Transition
,”
ASME J. Turbomach.
,
137
(
9
), p.
091007
.
20.
Wunderwald
,
D
,
1995
, “
Untersuchung Der Turbulenzstrukturen in Hochbelasteten Verdichter- Und Tubinengittern
,” Dissertation,
Universität der Bundeswehr München
,
München
.
21.
Bell
,
R. M
,
1995
, “
Untersuchungen Zur Stoß-Grenzschicht-Interferenz An Aerodynamisch Hochbelasteten Transsonik-Verdichtergittern
,” Dissertation,
Universität der Bundeswehr München
,
München
.
22.
Owen
,
F. K.
,
Horstman
,
C. C.
,
Stainback
,
P. C.
, and
Wagner
,
R. D.
,
1975
, “
Comparison of Wind Tunnel Transition and Freestream Disturbance Measurements
,”
AIAA J.
,
13
(
3
), pp.
266
269
.
23.
Hourmouziadis
,
J.
,
Buckl
,
F.
, and
Bergmann
,
P.
,
1987
, “
The Development of the Profile Boundary Layer in a Turbine Environment
,”
ASME J. Turbomach.
,
109
(
2
), pp.
286
295
.
24.
Hoeger
,
M
,
1991
, “
Theoretische Und Experimentelle Untersuchungen An Schaufelprofilen Mit Grenzschichtumschlag über Eine Laminare Ablöseblase
,” Dissertation,
TU Braunschweig
,
Braunschweig
.
25.
Teusch
,
R
,
2001
, “
Der Einfluß Periodisch Instationärer Zuströmung Auf Das Transitionsverhalten Von Verdichtergittern
,” Dissertation,
Universität der Bundeswehr München
,
München
.
26.
Hilgenfeld
,
L
,
2006
, “
Turbulenzstrukturen in Hochbelasteten Transsonik-Verdichtergittern Unter Besonderer Berücksichtigung Der Verdichtungsstoß-Grenzschicht-Interferenz
,” Dissertation,
Universität der Bundeswehr München
,
München
.
27.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer-Part I
,”
J. Aero. Sci.
,
18
(
7
), pp.
490
498
.
28.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. -W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4— LP Turbines
,”
ASME J. Turbomach.
,
119
(
2
), p.
225
.
29.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio & Electroacout.
,
15
(
AU-15
), pp.
70
73
.
30.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,
Springer
,
Berlin
.
31.
Rannacher
,
J.
,
1982
, “
Vorgang Des Grenzschichtumschlages in Laminaren Ablösewirbeln Und Seine Berücksichtigung Bei Grenzschichtrechnungen
,”
Maschinenbautechnik
,
31
, pp.
322
326
.
32.
Roberts
,
W. B.
,
1975
, “
The Effect of Reynolds Number and Laminar Separation on Axial Cascade Performance
,”
J. Eng. Power
,
97
(
2
), pp.
261
273
.
33.
Haueisen
,
V.
,
Schröder
,
T.
, and
Hennecke
,
D. K.
,
1998
, “
Measurements with Surface Mounted Hot Film Sensors on Boundary Layer Transition in Wake Disturbed Flow
,”
Advanced Non-Intrusive Instrumentation for Propulsion Engines, AGARD Conference Proceedings
.
34.
Tani
,
I.
,
1964
, “
Low-Speed Flows Involving Bubble Separations
,”
Prog. Aero. Sci.
,
5
, pp.
70
103
.
35.
Liepmann
,
H. W.
,
1946
, “
The Interaction Between Boundary Layer and Shock Waves in Transonic Flow
,”
J. Aero. Sci.
,
13
(
12
), pp.
623
637
.
36.
Haines
,
A. B.
,
Holder
,
D. W.
, and
Pearcey
,
H. H.
,
1954
, “
Scale Effects at High Subsonic and Transonic Speeds, and Methods for Fixing Boundary-layer Transition in Model Experiments
.”
ARC Technical Report
.
37.
Swoboda
,
M.
,
1993
, Zum Einfluß der Stoß-Grenzschicht-Interferenz auf transsonische Profilströmungen.
Fortschritt-Berichte VDI Reihe 7, Strömungstechnik. VDI-Verl., Düsseldorf
.
38.
Ackeret
,
J.
,
Feldmann
,
F.
, and
Rott
,
N.
,
1946
,
Untersuchungen an Verdichtungsstößen und Grenzschichten in schnell bewegten Gasen. Mitteilung Nr. 10 (english translation NACA-TM-1113), Institut für Aerodynamik, ETH Zürich, Zürich
.
39.
Dietrichs
,
H.-J.
,
Hourmouziadis
,
J.
,
Malzacher
,
F.
, and
Bräunling
,
W. J.
,
1987
, “
Flow Phenomena in Transonic Turbines Cascades: Detailed Experimental and Numerical Investigation
,”
8th International Conference of Air Breathing Engines (ISABE)
,
Cincinnati, OH
,
June 14–19
, American Institute of Aeronautics and Astronautics (AIAA).
40.
Martinstetter
,
M
,
2010
, “
Experimentelle Untersuchungen Zur Aerodynamik Hoch Belasteter Niederdruckturbinen-Beschaufelungen
,” Dissertation,
Universität der Bundeswehr München
,
München
.
41.
Kiya
,
M.
, and
Sasaki
,
K.
,
1983
, “
Structure of a Turbulent Separation Bubble
,”
J. Fluid Mech.
,
137
, pp.
83
113
.
42.
Piponniau
,
S.
,
Dussauge
,
J.-P.
,
Debiève
,
J.-F.
, and
Dupont
,
P.
,
2009
, “
A Simple Model for Low-Frequency Unsteadiness in Shock-Induced Separation
,”
J. Fluid Mech.
,
629
, pp.
87
108
.
43.
Pauley
,
L. L.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
, pp.
397
411
.
44.
Henne
,
J. M
,
1989
, “
Instationäre Stoß- Und Grenzschichtphänomene An Einzelprofilen Und in Einem Ebenen Gitter Bei Transsonischer Strömung
,” Dissertation,
RWTH Aachen
,
Aachen
.
45.
Brion
,
V.
,
Dandois
,
J.
,
Abart
,
J.-C.
, and
Paillart
,
P.
,
2017
, “
Experimental Analysis of the Shock Dynamics on a Transonic Laminar Airfoil
,”
Progress Flight Phys.
,
9
, pp.
365
386
.
46.
Zauner
,
M.
, and
Sandham
,
N. D.
,
2020
, “
Modal Analysis of a Laminar-Flow Airfoil Under Buffet Conditions At Re = 500, 000
,”
Flow Turbul. Combust.
,
104
(
2–3
), pp.
509
532
.
You do not currently have access to this content.