Abstract

This paper focuses on the influences of the discrete-hole shape and layout on the blade endwall film cooling effectiveness. The effect of upstream purge slot injection on the film cooling performance of the discrete hole was also investigated. The diffusion slot hole was first applied to the blade endwall. As a comparison, the cooling performance of the fan-shaped hole was also measured. Totally, six discrete-hole cooling configurations (two hole shapes × three layouts) were investigated. Experiments were performed in a seven-blade linear cascade with the exit Reynolds number of 2.64 × 105. The average blowing ratios (BR) of the discrete holes changed from 0.5 to 2.5, and the coolant mass flow ratio of the purge slot (MFR) was fixed at MFR = 1.5%. The distributions of the cooling effectiveness on the blade endwall were measured by the pressure-sensitive paint technique. Results indicate that the diffusion slot hole significantly increases the film cooling effectiveness on the blade endwall compared to the fan-shaped hole, especially at a high blowing ratio. The maximum relative increment of the cooling effectiveness is over 40%. The layout with the discrete holes arranged lining up with the tangent direction of the blade profile offset curves exhibits a comparable film cooling effectiveness with the layout with the discrete holes arranged according to the cross-flow direction. The film cooling effectiveness on the pressure surface corner is remarkably enhanced by deflecting the hole orientation angle toward the pressure surface. The combination of purge slot and diffusion slot holes supplies a full-coverage film cooling for the entire blade endwall at MFR = 1.5% and BR = 2.5. In addition, the slot injection leads to a non-negligible influence on the cooling performance of the discrete holes near the separation line.

References

1.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
2.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1997
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME Paper No. 76-GT-50
.
3.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
. 10.1115/1.3230352
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
. 10.1115/1.3250586
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
1
8
. 10.1115/1.2841006
6.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
. 10.1111/j.1749-6632.2001.tb05840.x
7.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
,
Morris
,
M. C.
,
Yelavkar
,
V.
, and
Bilwani
,
R.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME
Paper No. GT2014-26373
.
8.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
. 10.1115/1.3450239
9.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
. 10.1115/1.4003725
10.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
,
2007
, “
Effectiveness Distributions on Turbine Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,”
AIAA J. Thermophys Heat Transfer
,
21
(
4
), pp.
754
762
. 10.2514/1.30382
11.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
. 10.1115/1.4004817
12.
Müller
,
G.
,
Landfester
,
C.
,
Böhle
,
M.
, and
Krewinkel
,
R.
,
2019
, “
Turbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade
,”
ASME
Paper No. GT2019-90236
. 10.1115/gt2019-90236
13.
Song
,
L.
,
Zhu
,
P.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effect of Purge Flow on Endwall Flow and Heat Transfer Characteristics of a Gas Turbine Blade
,”
Appl. Therm. Eng.
,
110
, pp.
504
520
. 10.1016/j.applthermaleng.2016.08.172
14.
Zhu
,
P.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effects of Upstream Slot Geometry on the Endwall Aerothermal Performance of a Gas Turbine Blade Under Different Ejection Angle Conditions
,”
Int. J. Heat Mass Transfer
,
115
, pp.
652
669
. 10.1016/j.ijheatmasstransfer.2017.08.072
15.
Harasgama
,
S. P.
, and
Burton
,
C. S.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
. 10.1115/1.2928026
16.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
. 10.1115/1.2836731
17.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
. 10.1115/1.2840916
18.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
. 10.1115/1.2841189
19.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
. 10.1115/1.3068327
20.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
, pp.
507
514
. 10.1016/j.applthermaleng.2015.07.082
21.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
. 10.1016/j.ijheatmasstransfer.2016.06.047
22.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
. 10.1115/1.4042057
23.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
. 10.1115/1.4032166
24.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2018
, “
Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
140
(
2
), p.
021009
. 10.1115/1.4038278
25.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
. 10.1115/1.2098788
26.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
Endwall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,”
ASME J. Turbomach.
,
129
(
2
), pp.
212
220
. 10.1115/1.2464140
27.
Colban
,
W.
, and
Thole
,
K.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
341
356
. 10.1016/j.ijheatfluidflow.2006.05.002
28.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
. 10.1115/1.2720493
29.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
. 10.1115/1.4026964
30.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2018
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), p.
011006
. 10.1115/1.4038150
31.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Effects of Trenched Holes on Film Cooling of a Contoured Endwall Nozzle Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041009
. 10.1115/1.4003658
32.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
. 10.1115/1.1459735
33.
Okita
,
Y.
, and
Nishiura
,
M.
,
2006
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
. 10.1115/1.2437781
34.
Shih
,
T. P.
, and
Na
,
S.
,
2007
, “
Momentum-Preserving Shaped Holes for Film Cooling
,”
ASME Paper No. GT2007-27600
.
35.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
. 10.1115/1.4029817
36.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2019
, “
Sweeping Jet Film Cooling on a Turbine Vane
,”
ASME J. Turbomach.
,
141
(
3
), p.
031007
. 10.1115/1.4042070
37.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
. 10.1115/1.2777194
38.
Kusterer
,
K.
,
Tekin
,
N.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2012
,”
Experimental and Numerical Investigations of the Nekomimi Film Cooling Technology
,”
ASME
Paper No. GT2012-68400
. 10.1115/gt2012-68400
39.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2012
,
“Performance Evaluation of a Novel Film-Cooling Hole
ASME J. Heat Transfer
,
134
(
10
), p.
101702
. 10.1115/1.4006752
40.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2015
, “
Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater
,”
ASME J. Turbomach.
,
137
(
10
), p.
101006
. 10.1115/1.4030395
41.
An
,
B.
,
Liu
,
J.
,
Zhou
,
S.
,
Zhang
,
X.
, and
Zhang
,
C.
,
2016
, “
Film Cooling Investigation of a Slot-Based Diffusion Hole
,”
ASME Paper No. GT2016-56175
.
42.
An
,
B.
,
Liu
,
J.
, and
Zhou
,
S.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
. 10.1115/1.4036007
43.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform with Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
3
), p.
031015
. 10.1115/1.2777186
44.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
. 10.1115/1.4034985
45.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2014
, “
Influence of Purge Flow Injection Angle on the Aerothermal Performance of a Rotor Blade Cascade
,”
ASME J. Turbomach.
,
136
(
4
), p.
041012
. 10.1115/1.4025168
46.
Matthew
,
S.
,
Goldstein
,
R. J.
,
Simon
,
T. W.
,
Shu
,
F.
, and
Chiyuki
,
N.
,
2014
, “
Effect of Swirled Leakage Flow on Endwall Film Cooling
,”
ASME Paper No. IHTC15-9600
.
47.
Li
,
S. J.
,
Lee
,
J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Platform Cooling and Blade Suction Surface Phantom Cooling From Simulated Swirl Purge Flow
,”
ASME J. Turbomach.
,
138
(
8
), p.
081004
. 10.1115/1.4032676
48.
Yu
,
Z.
,
Li
,
C.
,
An
,
B.
,
Liu
,
J.
, and
Xu
,
G.
,
2020
, “
Experimental Investigation of Film Cooling Effectiveness on a Gas Turbine Blade Pressure Surface With Diffusion Slot Holes
,”
Appl. Therm. Eng.
,
168
, p.
114851
. 10.1016/j.applthermaleng.2019.114851
49.
Zhang
,
L. J.
, and
Jaiswal
,
R.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
. 10.1115/1.1400113
50.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
, p.
013001
. 10.5098/hmt.v1.1.3001
51.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
, Chaps. 3 and 4,
Wiley
,
New York
.
You do not currently have access to this content.