Abstract

The optimization of the turbine rotor tip geometry remains a vital opportunity to create more efficient and durable engines. Balancing the aerodynamic and thermal aspects, while maintaining the mechanical integrity, is key to reshape one of the most vulnerable and life-determining parts of the entire turbine. The ever-increasing turbine gas temperatures, combined with the difficulty of cooling the tip and the aerodynamically penalizing nature of the overtip leakage vortex, make the design of the tip a truly multidisciplinary challenge.

While many earlier efforts focused on uncooled geometries or studied the aerothermal impact with a fixed cooling configuration, the current paper presents the outcome of a multi-objective optimization where both the squealer rim geometry and the cooling injection pattern were allowed to vary simultaneously. This study explores a significantly wider design space, seeking a further synergistic aerothermal benefit through the combination of a quasi-fully arbitrary cooling arrangement, with mutating squealer rim structures. Specifically, the current manuscript presents the results of over 330 cooled and uncooled squealer tip geometries. The high-pressure turbine tip was automatically altered using a novel parametrization strategy adopting a maximum of 40 design variables to vary the squealer rim structures, as well as the size and location of the various cooling holes. The aerodynamic and thermal characteristics of every design were evaluated through Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) simulations with the k–ω shear-stress transport (SST) model for the turbulence closure, adopting an unstructured hexahedral grid typically containing more than 8 × 106 cells. A multi-objective differential evolution algorithm was used to obtain a Pareto front of designs which maximize the aerodynamic efficiency, while minimizing the overtip thermal loads. Eventually, a detailed investigation and robustness study was performed on a set of prime squealer geometries, to further investigate the aerodynamic flow topology and the effect of various cooling injection schemes on the heat transfer patterns.

References

1.
Denton
,
J. D.
, and
Cumpsty
,
N. A.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
3.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
(
1
), pp.
12
21
.
4.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
64
79
.
5.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.
6.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
7.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1
), pp.
343
351
.
8.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
494
502
.
9.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach
,
122
(
4
), pp.
692
698
.
10.
Cernat
,
B. C.
,
Paty
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes: Part I—Turbine Rainbow Rotor Testing and CFD Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
11.
Pátý
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
12.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
13.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
14.
Kim
,
Y. W.
,
Abdel-Messeh
,
W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1994
, “
A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. DE Metzger
,”
ASME Paper No. 94-GT-167.
15.
Acharya
,
S.
,
Yang
,
H.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,”
ASME Paper No. GT2002-30553.
16.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomac.
,
130
(
2
), p.
021002
.
17.
Han
,
J. C.
, and
Ekkad
,
S.
,
2001
, “
Recent Development in Turbine Blade Film Cooling
,”
Int. J. Rotating Mach.
,
7
(
1
), pp.
21
40
.
18.
Andreoli
,
V.
,
Braun
,
J.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
,
Bloxham
,
M.
,
Cummings
,
W.
, and
Langford
,
L.
,
2018
, “
Aerothermal Optimization of Fully Cooled Turbine Blade Tips
,”
ASME Paper No. GT2018-75099.
19.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
20.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T.
,
Li
,
H.
, and
Romero
,
E.
,
2018
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME Paper No. GT2018-76207.
21.
Virdi
,
A. S.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H. D.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.
22.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.
23.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
24.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.