Abstract

Linear cascades are commonly used as surrogate geometries when performing fundamental studies of turbomachinery blading. Several effects are not accounted for in linear cascades, such as the relative motion between blade and endwall. In this study, three different relative endwall velocities are analyzed. The effect of the relative motion between endwall and blade in a linear compressor cascade is studied through direct numerical simulations. Results show a significant change in the secondary flow structure within the passage. Most notably, the tip leakage vortex is displaced away from the blade. Still, the blade spanwise range affected by the secondary flow field is similar to the case without relative endwall motion. At the outlet plane, a stratification of the total pressure losses and the exit flow angle is found, which overshadows any blade wake effects near the endwall.

References

1.
Peacock
,
R. E.
,
1982
, “
A Review of Turbomachinery Tip Gap Effects: Part 1: Cascades
,”
Int. J. Heat Fluid Flow
,
3
(
4
), pp.
185
193
. 10.1016/0142-727X(82)90017-0
2.
Williams
,
R.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
Large Tip Clearance Flows in Two Compressor Cascades
,”
Proceedings of the ASME Turbo Expo 2010
,
Paper No. GT2010-22952
.
3.
Krug
,
A.
,
Busse
,
P.
, and
Vogeler
,
K.
,
2015
, “
Experimental Investigation Into the Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade
,”
ASME J. Turbomach.
,
137
(
6
), p.
061006
. 10.1115/1.4028797
4.
Peter
,
L.
, and
King
,
P.
,
1996
, “
Moving Endwall Effects on Passage Losses in a Compressor Cascade
,”
32nd Joint Propulsion Conference and Exhibit, AIAA Paper 1996–2653
.
5.
Pallot
,
G.
,
Kato
,
D.
,
Kodama
,
H.
,
Matsuda
,
K.
,
Taniguchi
,
H.
,
Kato
,
H.
, and
Funazaki
,
K.
,
2011
, “
The Effect of the Casing Movement Relative to the Blades on the Tip Leakage Loss in Axial Flow Compressors
,”
Proceedings of the ASME Turbo Expo 2011
,
Paper No. GT2011-46182
.
6.
Wang
,
Y.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 2: Effects of Endwall Motion
,”
AIAA J.
,
42
(
11
), pp.
2332
2340
. 10.2514/1.5272
7.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
. 10.1115/1.1791290
8.
Krug
,
A.
,
Busse
,
P.
,
Lange
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2017
, “
Challenges of Creating Realistic Periodical Unsteady Inflow Conditions in a Linear Cascade
,”
Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC12
,
Paper No. ETC2017-241
.
9.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids.
,
18
(
10
), p.
105102
. 10.1063/1.2354544
10.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2013
, “
Numerical Investigation of the Effect of Moving Endwall and Tip Clearance on the Losses in a Low Speed Axial Flow Compressor Cascade
,”
ASME 2013 Gas Turbine India Conference
,
ASME
,
Paper No. GTINDIA2013-3596
.
11.
Busse
,
P.
,
Krug
,
A.
, and
Vogeler
,
K.
,
2014
, “
Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade: Part II – Numerical Investigations
,”
Volume 2A: Turbomachinery
,
ASME
,
Paper No. GT2014-26121
.
12.
Busse
,
P
,
2019
, “
Numerische Untersuchung Instationärer Sekundärströmung Im Ebenen Und Axialen Verdichtergitter Unter Besonderer Berücksichtigung Von Übertragbarkeitsaspekten
,” Doctoral thesis,
Schriftenreihe aus dem Institut für Strömungsmechanik, Band 27, TU Dresden
,
Dresden, Germany
. (
In German
).
13.
Germain
,
B. S
,
1999
, “
Tip Vortex and Crenulation Effects in a Compressor Cascade With Moving Endwall
,” Master thesis,
Air Force Institute of Technology, Air University
,
Montgomery, AL
.
14.
Herzig
,
H.
,
Hansen
,
A.
, and
Costello
,
G.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,”
NACA Report 1163
.
15.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Vortex Dynamics and Low-Pressure Fluctuations in the Tip-Clearance Flow
,”
J. Fluid. Eng.
,
129
(
8
), pp.
1002
1014
. 10.1115/1.2746911
16.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid. Mech.
,
586
, pp.
177
204
. 10.1017/S0022112007006842
17.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2000
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II: Effect of Outer Casing Relative Motion
,”
Proceedings of the ASME Turbo Expo 2000
,
Paper No. GT2000-0514
.
18.
El-Batsh
,
H. M.
, and
Bassily Hanna
,
M.
,
2011
, “
An Investigation on the Effect of Endwall Movement on the Tip Clearance Loss Using Annular Turbine Cascade
,”
Int. J. Rotating Machinery
,
2011
, pp.
1
11
. 10.1155/2011/489150
19.
Decaix
,
J.
,
Balarac
,
G.
,
Dreyer
,
M.
,
Farhat
,
M.
, and
Münch
,
C.
,
2015
, “
RANS and LES Computations of the Tip-Leakage Vortex for Different Gap Widths
,”
J. Turbulence
,
16
(
4
), pp.
309
341
. 10.1080/14685248.2014.984068
20.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power.
,
30
(
5
), pp.
1316
1327
. 10.2514/1.B34963
21.
Virdi
,
A. S.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H. D.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power.
,
31
(
2
), pp.
527
536
. 10.2514/1.B35331
22.
Hinterberger
,
C.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2008
, “
2D and 3D Turbulent Fluctuations in Open Channel Flow With Re Tau = 590 Studied by Large Eddy Simulation
,”
Flow, Turbul. Combust.
,
80
(
2
), pp.
225
253
. 10.1007/s10494-007-9122-2
23.
Wissink
,
J.
, and
Rodi
,
W.
,
2008
, “
Numerical Study of the Near Wake of a Circular Cylinder
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1060
1070
. 10.1016/j.ijheatfluidflow.2008.04.001
24.
Wang
,
P.
,
Fröhlich
,
J.
,
Michelassi
,
V.
, and
Rodi
,
W.
,
2007
, “
Large Eddy Simulation of Variable Density Turbulent Axisymmetric Jets
,”
Proceedings of the Fifth International Symposium on Turbulent Shear Flow Phenomena
,
R.
Friedrich
,
N.
Adams
,
N.
Eaton
,
J.
Humphrey
,
N.
Kasagi
, and
M.
Leschziner
, eds.,
Munich, Germany
, pp.
1049
1054
.
25.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near the Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,”
Proceedings of the ASME Turbo Expo
,
Paper No. GT2014-25071
.
26.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Ciorciari
,
R.
, and
Niehuis
,
R.
,
2015
, “
Analysis of the Influence of Periodic Passing Wakes on the Secondary Flow Near the Endwall of a Linear LPT Cascade Using DNS and U-RANS
,”
Proceedings of 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
27.
Baum
,
O.
,
Koschichow
,
D.
, and
Fröhlich
,
J.
,
2016
, “
Influence of the Coriolis Force on the Flow in a Low Pressure Turbine Cascade T106
,”
Proceedings of the ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
.
28.
Pierce
,
C. D.
,
2001
, “
Progress-Variable Apporach for Large-Eddy Simulation of Turbulent Combustion
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
.
29.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
(
1
), pp.
69
94
. 10.1017/S0022112095000462
You do not currently have access to this content.