Abstract

This paper presents a fully turbulent two-phase discrete adjoint method for metastable condensing flows targeted to turbomachinery applications. The method is based on a duality preserving algorithm and implemented in the open-source CFD tool SU2. The optimization framework is applied to the shape optimization of two canonical steam turbine cascades, commonly referred to as White cascade and Dykas cascade. The optimization were carried out by minimizing either the liquid volume fraction downstream of the cascade or the total entropy generation due viscous effects and heat transfer. In the first case, the amount of condensate turned out to be reduced by as much as 24%, but without reduction of the generated entropy, while the opposite resulted in the second case. The outcomes demonstrate the capability and computational efficiency of adjoint-based automated design for the shape optimization of turbomachinery operating with phase change flow.

References

1.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
. 10.1007/BF01061285
2.
Jameson
,
A.
,
Martinelli
,
L.
, and
Pierce
,
N. A.
,
1998
, “
Optimum Aerodynamic Design Using the Navier–Stokes Equations
,”
Theor. Comput. Fluid Dyn.
,
10
(
1
), pp.
213
237
. 10.1007/s001620050060
3.
Reuther
,
J. J.
,
Jameson
,
A.
,
Alonso
,
J. J.
,
Rimlinger
,
M. J.
, and
Saunders
,
D.
,
1999
, “
Constrained Multipoint Aerodynamic Shape Optimization Using An Adjoint Formulation and Parallel Computers, Part 1
,”
J. Aircraft
,
36
(
1
), pp.
51
60
. 10.2514/2.2413
4.
Mader
,
C. A.
,
Alonso
,
J. J.
, and
Der Weide
,
E. V.
,
2008
, “
Adjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers
,”
AIAA J.
,
46
(
4
), pp.
863
873
. 10.2514/1.29123
5.
Campobasso
,
M. S.
,
Duta
,
M. C.
, and
Giles
,
M. B.
,
2003
, “
Adjoint Calculation of Sensitivities of Turbomachinery Objective Functions
,”
J. Propul. Power.
,
19
(
4
), pp.
693
703
. 10.2514/2.6159
6.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2014
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using An Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
. 10.1115/1.4025164
7.
Wang
,
D. X.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p.
021011
. 10.1115/1.3072498
8.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines
,”
J. Propul. Power.
,
31
(
5
), pp.
1298
1319
. 10.2514/1.B35433
9.
Albring
,
T. A.
,
Sagebaum
,
M.
, and
Gauger
,
N. R.
,
2016
, “
Efficient Aerodynamic Design Using the Discrete Adjoint Method in Su2
,”
17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Washington, DC
,
13–17 June 2016
.
10.
Economon
,
D. T.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2015
, “
Su2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.10.2514/1.J053813
11.
Sagebaum
,
M.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2017
,
Codipack – Code Differentiation Package | Scientific Computing
.
12.
Zhou
,
B. Y.
,
Albring
,
T.
,
Gauger
,
T.
,
Ilario
,
T.
,
Economon
,
T. D.
, and
Alonso
,
J. J.
,
2017
, “
Reduction of Airframe Noise Components Using a Discrete Adjoint Approach
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Denver, Colorado
,
June 5–9
.
13.
Sanchez
,
R.
,
Palacios
,
R.
,
Economon
,
T. D.
,
Alonso
,
J. J.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2017
, “
Optimal Actuation of Dielectric Membrane Wings Using High-Fidelity Fluid-Structure Modelling
,”
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Grapevine, TX
,
Jan. 9–13
.
14.
Vitale
,
S.
,
Albring
,
T. A.
,
Pini
,
M.
,
Gauger
,
N. R.
, and
Colonna
,
P.
,
2017
, “
Fully Turbulent Discrete Adjoint Solver for Non-Ideal Compressible Flow Applications
,”
J. Global Power Propulsion Soc.
,
1
(
12
), pp.
252
270
. 10.22261/JGPPS.Z1FVOI
15.
Rubino
,
A.
,
Pini
,
M.
,
Colonna
,
P.
,
Albring
,
T.
,
Nimmagadda
,
S.
,
Economon
,
T.
, and
Alonso
,
J.
,
2018
, “
Adjoint-Based Fluid Dynamic Design Optimization in Quasi-Periodic Unsteady Flow Problems Using a Harmonic Balance Method
,”
J. Comput. Phys.
,
372
,
2018/06/26/09:26:31
, pp.
220
235
. 10.1016/j.jcp.2018.06.023
16.
Young
,
J.
,
1984
, “
Semi-Analytical Techniques for Investigating Thermal Non-equilibrium Effects in Wet Steam Turbines
,”
Int. J. Heat Fluid Flow
,
5
(
2
), pp.
81
91
. 10.1016/0142-727X(84)90026-2
17.
Gyarmathy
,
G.
,
2005
, “
Nucleation of Steam in High-Pressure Nozzle Experiments
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
6
), pp.
511
521
. 10.1243/095765005X31388
18.
Lettieri
,
C.
,
Paxson
,
D.
,
Spakovszky
,
Z.
, and
Bryanston-Cross
,
P.
,
2017
, “
Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a De Laval Nozzle
,”
ASME J. Eng. Gas. Turbines. Power.
,
140
(
4
), 11, p.
041701
. 10.1115/1.4038082
19.
Starzmann
,
J.
,
Casey
,
M. M.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2013
, “
Wetness Loss Prediction for a Low Pressure Steam Turbine Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
228
(
2
), pp.
216
231
. 10.1177/0957650913513253
20.
Noori Rahim Abadi
,
S. M. A.
,
Ahmadpour
,
A.
,
Abadi
,
S. M. N. R.
, and
Meyer
,
J. P.
,
2017
, “
Cfd-Based Shape Optimization of Steam Turbine Blade Cascade in Transonic Two Phase Flows
,”
Appl. Therm. Eng.
,
112
, pp.
1575
1589
. 10.1016/j.applthermaleng.2016.10.058
21.
Jamali Keisari
,
S.
, and
Shams
,
M.
,
2016
, “
Shape Optimization of Nucleating Wet-Steam Flow Nozzle
,”
Appl. Therm. Eng.
,
103
, pp.
812
820
. 10.1016/j.applthermaleng.2016.04.134
22.
Hill
,
P.
,
1966
, “
Condensation of Water Vapour During Supersonic Expansion in Nozzles
,”
J. Fluid. Mech.
,
25
(
3
), pp.
593
620
. 10.1017/S0022112066000284
23.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
SU2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.10.2514/1.J053813
24.
Banach
,
S.
,
1922
, “
Sur Les Opérations Dans Les Ensembles Abstraits Et Leur Application Aux équations Intégrales
,”
Fundamenta Math.
,
3
, pp.
133
181
. 10.4064/fm-3-1-133-181
25.
Sagebaum
,
M.
,
Albring
,
T.
, and
Gauger
,
N. R.
,
2019
, “
High-Performance Derivative Computations using CoDiPack
,”
ACM Trans. Math. Softw.
,
45
(
4
), Article 38https://doi.org/10.1145/3356900.
26.
van der Stelt
,
T. P.
,
Nannan
,
N. R.
, and
Colonna
,
P.
,
2012
, “
The IPRSV Equation of State
,”
Fluid Phase Equilib.
,
330
, pp.
24
35
. 10.1016/j.fluid.2012.06.007
27.
Giordano
,
M.
,
Hercus
,
S.
, and
Cinnella
,
P.
,
2010
, “
Effects of Modelling Uncertainties in Condensing Wet-Steam Flows Through Supersonic Nozzles
,”
V European Conference on Computational Fluid Dynamics ECCOMAS
,
Lisbon, Portugal
,
June 14–17
.
28.
Vargaftik
,
N. B.
,
Volkov
,
B. N.
, and
Voljak
,
L. D.
,
1983
, “
International Tables of the Surface Tension of Water
,”
J. Phys. Chem. Ref. Data.
,
12
(
3
), pp.
817
820
. 10.1063/1.555688
29.
Moore
,
M.
, and
Sieverding
,
C.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators: Theory, Instrumentation, Engineering
(
Series in Thermal and Fluids Engineering
),
Hemisphere Pub. Corp
.
30.
Starzmann
,
J.
,
Casey
,
M. V.
, and
Mayer
,
J. F.
,
2012
, “
Water Droplet Flow Paths and Droplet Deposition in Low Pressure Steam Turbines
,”
High Performance Computing in Science and Engineering’12
,
Springer Berlin Heidelberg
,
Oct
, pp.
351
365
.
31.
Kraft
,
D.
,
1998
,
A Software Package for Sequential Quadratic Programming
.
Technical Report
,
DLR German Aerospace Center — Institute for Flight Mechanics
,
Koln, Germany
.
32.
Dykas
,
S.
,
Majkut
,
M.
,
Strozik
,
M.
, and
Smołka
,
K.
,
2015
, “
Experimental Study of Condensing Steam Flow in Nozzles and Linear Blade Cascade
,”
Int. J. Heat. Mass. Transfer.
,
80
, pp.
50
57
. 10.1016/j.ijheatmasstransfer.2014.09.010
33.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
354
(
1704
), pp.
59
88
. 10.1098/rsta.1996.0003
34.
Gyarmathy
,
G.
,
1962
, “
Grundlagen Einer Theorie Der Naßdampfturbine
,” PhD thesis,
Eidgenössischen technischen hochschule
,
Zurich
.
35.
Gerber
,
A.
, and
Kermani
,
M.
,
2004
, “
A Pressure Based Eulerian–Eulerian Multi-Phase Model for Non-Equilibrium Condensation in Transonic Steam Flow
,”
Int. J. Heat. Mass. Transfer.
,
47
(
10–11
), pp.
2217
2231
Elsevier BV
. 10.1016/j.ijheatmasstransfer.2003.11.017
You do not currently have access to this content.