Abstract

Further improvements in gas turbine efficiency can be sought through more advanced cooling systems—such as the double-wall, effusion system—which provide high cooling effectiveness with low coolant utilization. The double-wall system, as described here, comprises two walls: one with a regular array of impingement holes and the other with a closely packed, regular array of film holes (characteristic of effusion systems). These walls are mechanically and thermally connected via a bank of pedestals which increase coolant wetted area and turbulent flow features. However, a lack of data exists in the open literature on these systems. This study presents a novel experimental heat transfer facility designed with the intent of investigating flat plate versions of such double-wall geometries. Key features of the facility are presented including the use of recirculation to increase the mainstream-to-coolant temperature ratio and the use of infrared thermography to obtain thermal measurements. Some rig commissioning characteristics are also provided which demonstrate well-conditioned, uniform flow. Both coolant and mainstream Reynolds numbers are matched to engine conditions, with the Biot number within around 15% of engine conditions. The facility is used to assess the cooling performance of four double-wall effusion geometries which incorporate various geometrical features. Both overall effectiveness and film effectiveness measurements are presented at a range of coolant mass flows with conclusions drawn as to preferable features from a cooling perspective. The results from a fully conjugate computational fluid dynamics (CFD) model of the facility are presented which utilized boundary conditions obtained during experimental runs. Additionally, a computationally efficient decoupled conjugate method developed previously by the authors was adapted to assess the experimental geometries with the results comparing favorably.

References

1.
Murray
,
A. V.
,
Ireland
,
P.
, and
Romero
,
E.
,
2019
, “
Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
,”
ASME J. Turbomach.
,
141
(
4
), p.
041008
. 10.1115/1.4041751
2.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p. V05BT22A015.
3.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
1999
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
. 10.1115/1.555438
4.
Manzhao
,
K.
,
Huiren
,
Z.
,
Songling
,
L.
, and
Hepeng
,
Y.
,
2008
, “
Internal Heat Transfer Characteristics of Lamilloy Configurations
,”
Chin. J. Aeronaut.
,
21
(
1
), pp.
28
34
. 10.1016/S1000-9361(08)60004-7
5.
Wassell
,
A. B.
, and
Bhangu
,
J. K.
,
1980
, “
The Development and Application of Improved Combustor Wall Cooling Techniques
,”
ASME 1980 International Gas Turbine Conference and Products Show
,
New Orleans, LA
,
Mar. 10–13
, p. V01AT01A066.
6.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
,
2003
, “
Flow and Heat (Mass) Transfer Characteristics in an Impingement/Effusion Cooling System With Crossflow
,”
ASME J. Turbomach.
,
125
(
1
), pp.
74
82
. 10.1115/1.1519835
7.
Hong
,
S. K.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement∕Effusion Cooling With Crossflow
,”
J. Heat Transf.
,
129
(
12
), p.
1697
. 10.1115/1.2767727
8.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
9.
Wang
,
Z.
,
Ireland
,
P.
,
Jones
,
T. V.
, and
Kohler
,
S. T.
,
1994
, “
Measurements of Local Heat Transfer Coefficient Over the Full Surface of a Bank of Pedestals with Fillet Radii
,” ASME Paper No. 94-GT, p.
307
.
10.
Martin
,
A.
, and
Thorpe
,
S. J.
,
2012
, “
Experiments on Combustor Effusion Cooling Under Conditions of Very High Free-Stream Turbulence
,” ASME Paper No. GT2012-68863.
11.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
. 10.1016/S0142-727X(99)00030-2
12.
Fang
,
F.-M.
,
1997
, “
A Design Method for Contractions With Square End Sections
,”
J. Fluids Eng.
,
119
(
2
), pp.
454
458
. 10.1115/1.2819156
13.
BS EN ISO
,
2005
‘BS EN ISO 9300:2005—Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles’, BSI.
14.
Tsang
,
C. L. P.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2000
, “
Analysis of Transient Heat Transfer Experiments
,”
Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
,
Mar. 26–30
, Vol.
2
, pp.
714
721
.
15.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2018
, “
The Effects of Combustor Cooling Features on Nozzle Guide Vane Film Cooling Experiments
,”
ASME J. Turbomach
,
141
(
1
), p.
011005
. 10.1115/1.4041467
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
17.
Ngetich
,
G. C.
,
Ireland
,
P.
,
Murray
,
A. V.
, and
Romero
,
E.
,
2018
, “
A Three-Dimensional Conjugate Approach for Analyzing a Double-Walled Effusion-Cooled Turbine Blade
,”
ASME J. Turbomach.
,
141
(
1
), p.
011002
. 10.1115/1.4041379
18.
Goldstein
,
R. J.
,
1971
, “Film Cooling,”
Advances in Heat Transfer
, Vol.
7
,
T. F.
Irvine
Jr.
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
321
379
.
19.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
. 10.1115/1.1371778
20.
Murray
,
A. V.
,
Ireland
,
P. T.
,
Wong
,
T. H.
,
Tang
,
S. W.
, and
Rawlinson
,
A. J.
,
2018
, “
High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance
,”
Int. J. Turbomach. Propuls. Power
,
3
(
1
), p.
4
. 10.3390/ijtpp3010004
21.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
. 10.2514/3.2014
22.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons Inc.
,
New Jersey
.
23.
Bunker
,
R. S.
,
2006
,
The Gas Turbine Handbook
,
US Department of Energy NETL
,
Morgantown, WV
.
24.
Azad
,
G. S.
,
Han
,
J.-C.
,
Tend
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
. 10.1115/1.1308567
25.
Ling
,
J. C.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2002
, “
Full Coverage Film Cooling for Combustor Transition Sections
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
1011
1021
.
26.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2017
, “
Nozzle Guide Vane Film Cooling Effectiveness for Radial Showerheads with Restricted Cooling Hole Surface Angles
,”
Volume 5C: Heat Transfer
,
Charlotte, NC
,
June 26–30
, p. V05CT19A023.
27.
Holland
,
M. J.
, and
Thake
,
T. F.
,
1980
, “
Rotor Blade Cooling in High Pressure Turbines
,”
J. Aircr.
,
17
(
6
), pp.
412
418
. 10.2514/3.44668
You do not currently have access to this content.