Secondary flow limits the aerodynamic loading level of turbomachinery. Vortex generators (VGs) offer the potential to attenuate secondary flow when implemented at the endwall of the blade passage. Customary design usually relies on computational fluid dynamics (CFD); however, VG geometry modeling and mesh generation are challenging. This paper presents an efficient method for designing the optimal VG layout. In this approach, first, a mathematical model (BAYC) is introduced to replace the actual VGs; hence, simulation can be carried out without detailed VG gridding. Second, an optimization procedure with response surface methods is employed to determine the optimal VG layout. To illustrate the proposed method, compressor cascades with one and three VGs are used as the test cases. The results demonstrate that the optimal VG layout may effectively weaken the secondary flow and can decrease the aerodynamic loss by 15–25% in almost all incidence angle ranges, particularly at positive incidence angles. Flow mechanism analysis indicates that VGs can enhance the boundary layer kinetic energy, thereby elevating the capability to withstand adverse pressure gradients.

References

1.
Lei
,
V. M.
, and
Spakovszky
,
Z. S.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), pp.
475
486
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
5.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Shahpar
,
S.
,
Taylor
,
M. D.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine EndWall Design: Part I-Three-Dimensional Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
6.
Ji
,
L. C.
,
Shao
,
W. W.
,
Yi
,
W. L.
, and
Chen
,
J.
,
2007
, “
A Model for Describing the Influences of SUC-EW Dihedral Angle on Corner Separation
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
, ASME Paper No. GT2007-27618.
7.
Ji
,
L. C.
,
Tian
,
Y.
,
Li
,
W. W.
,
Yi
,
W. L.
, and
Wen
,
Q.
,
2012
, “
Numerical Studies on Improving Performance of Rotor-67 by Blended Blade and EndWall Technique
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
ASME
Paper No. GT2012-68535.
8.
Bloxham
,
M. J.
, and
Bons
,
J. P.
,
2010
, “
Leading-Edge Endwall Suction and Midspan Blowing to Reduce Turbomachinery Losses
,”
AIAA J. Propul. Power
,
26
(
6
), pp.
1268
1275
.
9.
Liesner
,
K.
,
Meyer
,
R.
,
Gmelin
,
C.
, and
Thiele
,
F.
,
2013
, “
On the Performance of Boundary Layer Suction for Secondary Flow Control in a High Speed Compressor Cascade
,” AIAA Paper No. 2013-2749.
10.
Taylor
,
H. D.
,
1947
, “
The Elimination of Diffuser Separation by Vortex Generators
,” United Aircraft Corporation, No. R-4012-3.
11.
Lin
,
J. C.
,
2002
, “
Review of Research on Low-Prole Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
38
(
4–5
), pp.
389
420
.
12.
Serakawi
,
A. R.
, and
Ahmad
,
K. A.
,
2012
, “
Experimental Study of Half-Delta Wing Vortex Generator for Flow Separation Control
,”
AIAA J. Aircraft
,
49
(
1
), pp.
76
81
.
13.
Forster
,
K. J.
, and
White
,
T. R.
,
2014
, “
Numerical Investigation into Vortex Generators on Heavily Cambered Wings
,”
AIAA J.
,
52
(
5
), pp.
1059
1071
.
14.
Bevan
,
R. L. T.
,
Poole
,
D. J.
, and
Rendall
,
T. C. S.
,
2017
, “
Adaptive Surrogate-Based Optimization of Vortex Generators for Tiltrotor Geometry
,”
AIAA J. Aircraft
,
54
(
3
), pp.
1011
1024
.
15.
Gammerdinger
,
P. M.
, and
Shreeve
,
R. P.
,
2013
, “
The Effects of Low-Profile Vortex Generators on Flow in a Transonic Fan-Blade Cascade
,” AIAA Paper No. 96-0250.
16.
Agarwal
,
R.
,
Dhamarla
,
A.
,
Narayannan
,
S. R.
,
Goswami
,
S. N.
, and
Srinivasan
,
B.
,
2014
, “
Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
, ASME Paper No. GT2014-25329.
17.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2013
, “
Effects of Vortex Generator Application on the Performance of a Compressor Cascade
,”
ASME J. Turbomach.
,
135
(
2
),
021026
.
18.
Diaa
,
A. M.
,
El-Dosoky
,
M. F.
,
Abdel-Hafez
,
O. E.
, and
Ahmed
,
M. A.
,
2014
, “
Secondary Flow Control on Axial Flow Compressor Cascade Using Vortex Generators
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
, ASME Paper No. IMECE2014-37790.
19.
Diaa
,
A. M.
,
El-Dosoky
,
M. F.
,
Ahmed
,
M. A.
, and
Abdel-Hafez
,
O. E.
,
2015
, “
Boundary Layer Control of an Axial Compressor Cascade Using Nonconventional Vortex Generators
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
, ASME Paper No. IMECE2015-52310.
20.
Diaa
,
A. M.
,
El-Dosoky
,
M. F.
,
Ahmed
,
M. A.
, and
Abdel-Hafez
,
O. E.
,
2015
, “
Effect of a New Vortex Generator on the Performance of an Axial Compressor Cascade at Design and Off-Design Conditions
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
, ASME Paper No. IMECE2015-52293.
21.
Chima
,
R. V.
,
2002
, “
Computational Modeling of Vortex Generators for Turbomachinery
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
, ASME Paper No. GT2002-30677.
22.
Bush
,
R. H.
,
Power
,
G. D.
, and
Towne
,
C. E.
,
1998
, “
WIND: The Production Flow Solver of the NPARC Alliance
,” AIAA Paper No. 1998-0935.
23.
Nelson
,
C. C.
,
Lankford
,
R. H.
, and
Nichols
,
R. H.
,
2004
, “
Recent Improvements to the Wind(-US) Code at AEDC
,” AIAA Paper No. 2004-0527.
24.
Wendt
,
B. J.
,
1998
, “
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
,” AIAA Paper No. 1998-0693.
25.
Bender
,
E. E.
,
Anderson
,
B. H.
, and
Yagle
,
P. J.
,
1999
, “
Vortex Generator Modeling for Navier–Stokes Codes
,” ASME Paper No. FEDSM99-6929.
26.
Dudek
,
J. C.
,
2011
, “
Modeling Vortex Generators in a Navier–Stokes Code
,”
AIAA J.
,
49
(
4
), pp.
748
760
.
27.
Dudek
,
J. C.
,
2006
, “
Empirical Model for Vane-Type Vortex Generators in a Navier–Stokes Code
,”
AIAA J.
,
44
(
8
), pp.
1779
1789
.
28.
Myer
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiment
,
Wiley
,
New York
, pp.
343
350
.
29.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1992
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc.
,
13
(
1
), pp.
270
310
.
30.
Hardy
,
R. L.
,
1971
, “
Multiquadric Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
76
(
8
), pp.
1905
1915
.
31.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand: By DG Krige
,” Ph.D. thesis,
University of the Witwatersrand
,
Johannesburg, South Africa
.
32.
Brereton
,
R. G.
, and
Lloyd
,
G. R.
,
2010
, “
Support Vector Machines for Classification and Regression
,”
Analyst
,
135
(
2
), pp.
230
267
.
33.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
34.
Goldberg
,
D. E.
,
1994
, “
Genetic and Evolutionary Algorithms Come of Age
,”
Commun. ACM
,
37
(
3
), pp.
113
120
.
35.
Li
,
J. B.
,
Ji
,
L. C.
, and
Yi
,
W. L.
,
2017
, “
Experimental and Numerical Investigation on the Aerodynamic Performance of a Compressor Cascade Using Blended Blade and End Wall
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
, ASME Paper No. GT2017-63879.
36.
Geisser
,
S.
,
1974
, “
A predictive Approach to the Random Effect Model
,”
Biometrika
,
61
(
1
), pp.
101
107
.
You do not currently have access to this content.