In modern gas turbine engines, the rotor casing is vulnerable to thermal failures due to large unsteady heat fluxes. The rotor tip flow unsteadiness is induced by the periodic passage of the rotor blades, with an intensity dependent on the tip gap geometry. Hence, the understanding of the physics is of paramount importance to develop appropriate predictive tools and improve the cooling schemes. The present research aims at providing essential information on the flow conditions, which should serve to assess the relative impact of the overtip flow, tip gap magnitude, and work extraction processes on the casing thermal load. This paper presents simultaneous measurements of steady and unsteady heat transfer, pressure and rotor tip clearance in the casing of a transonic turbine stage. The research article was tested in a compression tube facility operating at engine representative conditions (vane Mach number 1.07, vane outlet Reynolds number 1.3 × 106, pressure ratio is 2.92, at 6790 rpm). The rotor blade geometry has a flat tip with a nominal tip clearance of about 0.4% of blade height. The heat transfer, pressure, and tip clearance data were obtained at three circumferential positions around the turbine casing. The heat flux was monitored using a single-layered thin film gauge able to resolve with high fidelity the wall temperature fluctuations. The heat flux sensor was mounted on a probe equipped with a heating device that allows varying the wall temperature. A series of experiments was performed at different heating rates to derive the local adiabatic wall temperature and the adiabatic convective heat transfer coefficient. A high bandwidth capacitive sensor provided the instantaneous value of the single blade tip clearance. A simple zero-dimensional model has been proved effective to predict the local flow temperature while the rotor spins up prior to the test, and estimate the overtip flow temperature during a test.

References

1.
Glezer
,
B.
,
2004
, “
Thermal-Mechanical Design Factors Affecting Turbine Blade Tip Clearance
Turbine Blade Tip Design and Tip Clearance Treatment
(von Karman Institute for Fluid Dynamics Lecture Series),
T.
Arts
, ed.,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
2.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. NY Acad. Sci.
,
934
, pp.
27
36
.10.1111/j.1749-6632.2001.tb05840.x
3.
Malak
,
M.
,
Liu
,
J.
, and
Zurmehly
,
E.
,
2011
, “
Turbine Shroud Durability Analysis Using Time Unsteady CFD and Si-C Testing
,” ISABE Paper No. 2011-1706.
4.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
64
79
.10.1111/j.1749-6632.2001.tb05843.x
5.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer In Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
, pp.
301
309
.10.1115/1.3262269
6.
Moore
,
J.
, and
Elward
,
K. M.
,
1993
, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
,
115
, pp.
392
399
.10.1115/1.2929266
7.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2009
, “
Turbine Blade Tip Heat Transfer in Low Speed And High Speed Flows
,”
ASME J. Turbomach.
,
133
, pp.
041025
.10.1115/1.4002424
8.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.-P.
,
2012
, “
Analysis Of Unsteady Tip and Endwall Heat Transfer in A Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.10.1115/1.4003719
9.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in A Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
.10.1115/1.2137745
10.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.10.1115/1.4002949
11.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.10.1115/1.2952378
12.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
13.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Norton
,
R. J.
, and
Yuhzang
,
C.
,
1985
, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,”
AIAA
Paper No. 85-1220.10.2514/6.1985-1220
14.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
(
3
), pp.
502
507
.10.1115/1.2927902
15.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2007
, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
,
129
(
1
), pp.
84
91
.10.1115/1.2372772
16.
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2008
, “
The Effects of Blade Passing on the Heat Transfer Coefficient of the Overtip Casing in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
130
(
4
), p.
041009
.10.1115/1.2776950
17.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Casing Wall of an Axial Turbine Operating At Engine Representative Flow Conditions (I): Time-Mean Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
933
944
.10.1016/j.ijheatfluidflow.2004.02.027
18.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Casing Wall of an Axial Turbine Operating At Engine Representative Flow Conditions (II): Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.10.1016/j.ijheatfluidflow.2004.02.028
19.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.10.1115/1.2950068
20.
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
An Investigation on Turbine Tip and Shroud Heat Transfer,
ASME J. Turbomach.
,
125
(
3
), pp.
513
520
.10.1115/1.1575253
21.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” Paper No. AGARD AG-165.
22.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Tulkens
,
M.
, and
Steiner
,
A.
,
2011
, “
High-Fidelity Rotor Gap Measurements in a Short-Duration Turbine Rig
,”
Mech. Syst. Signal Process
., Vol. 27, pp. 590–603.10.1016/j.ymssp.2011.09.008
23.
Dénos
,
R
.,
1996
, “
Aero-Thermodynamic Investigation of the Unsteady Flow in a Transonic Turbine Rotor
,” Ph.D. thesis, von Karman Institute for Fluid Dynamics/University of Poitiers, Rhode-St-Genèse Belgium.
24.
Solano
,
J. P.
, and
Paniagua
,
G.
,
2009
, “
Novel Two-Dimensional Transient Heat Conduction Calculation in a Cooled Rotor: Ventilation Preheating—Blow-Down Flux
,”
ASME J. Heat Transfer
,
131
(
8
), pp.
1
9
.10.1115/1.3122777
25.
Thomas
,
G. A.
,
Atkins
,
N. R.
,
Thorpe
,
S. J.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2007
, “
The Effect of a Casing Step on the Over-Tip Aerothermodynamics of a Transonic HP Turbine Stage
,”
ASME
Paper No. GT2007-27780.10.1115/GT2007-27780
26.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
Improved Fast-Response Heat Transfer Instrumentation for Short-Duration Wind Tunnels
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1897
1909
.10.1088/0957-0233/15/9/030
27.
Polanka
,
M. D.
,
Clark
,
J. P.
,
White
,
A. L.
,
Meininger
,
M.
, and
Praisner
,
T. J.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading: Part B—Comparisons Between Prediction and Experiment Including Unsteady Effects
,”
ASME
Paper No. GT2003-38916.10.1115/GT2003-38916
28.
Harvey
,
N. W.
,
2004
, “
Aero-Thermal Implications of Shroudless and Shrouded Blades
,”
Turbine Blade Tip Design and Tip Clearance Treatment
(von Karman Institute for Fluid Dynamics Lecture Series),
T.
Arts
, ed.,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
29.
Zhang
,
Q.
, and
He
,
He
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamics Performance
,”
J. Propul. Power
,
0748
4658
,
27
, no.
5 pp. 1008–1014
10.2514/1.55134.
You do not currently have access to this content.