The turbine blade tip clearances control in large aero-engines is currently performed by means of impinging fan air on the outer case flanges. The aim of the present study is to evaluate both the heat transfer coefficient and the adiabatic thermal effectiveness characteristics of an enginelike ACC system, and in particular, to comprehend the effects of the undercowl flow on the impingement jets. The considered geometry replicates the impingement tubes and the by-pass duct used in active control clearance systems. The tube's internal diameter is D = 12 mm, the cooling hole's diameter is d = 1 mm, and the span-wise pitch is Sy/d=12. In order to simulate the undercowl flow, the impingement arrays are inserted inside a tunnel that replicates the typical shape of a real engine by-pass duct. Tests were conducted varying both the mainstream Reynolds number and the jets Reynolds number in a range typical of real-engine operative conditions (Rej=2000-10000, β=1.05-1.15). Numerical calculations are finally proposed to point out if CFD is able to confidently reproduce the experimental evidences.

References

1.
Justak
,
J. F.
, and
Doux
,
C.
,
2009
. “
Self-Acting Clearance Control For Turbine Blade Outer Air Seals
,”
ASME
Paper No. GT2009-59683
.10.1115/GT2009-59683
2.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2012
, “
Effects of Inlet Temperature Uniformity and Nonuniformity on the Tip Leakage Flow and Rotor Blade Tip and Casing Heat Transfer Characteristics
,”
ASME J. Turbomach.
,
134
(
2
), p.
021001
.10.1115/1.4003211
3.
Qingjun
,
Z.
,
Jianyi
,
D.
,
Huishe
,
W.
,
Xiaolu
,
Z.
, and
Jianzhong
,
X.
,
2010
. “
Tip Clearance Effects on Inlet Hot Streak Migration Characteristics in High Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
ASME J. Turbomach.
,
132
(
1
), p.
011005
.10.1115/1.3103925
4.
Halila
,
E.
,
Lenahan
,
D.
, and
Thomas
,
T.
,
1982
, “
High Pressure Turbine Test Hardware
,” NASA CR-167955.
5.
Beck
,
B.
, and
Fasching
,
W.
,
1982
, “
CF6 Jet Engine Performance Improvement—Low Pressure Turbine Active Clearance Control
,” NASA CR-165557.
6.
Kercher
,
D.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
, pp.
73
82
.10.1115/1.3445306
7.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transf.
,
103
, pp.
337
342
.10.1115/1.3244463
8.
Behbahani
,
A.
, and
Goldstein
,
R.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Power
,
105
, pp.
354
360
.10.1115/1.3227423
9.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.
,
2007
. “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transf.
,
50
, pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
10.
Ahmed
,
F.
,
Weigand
,
B.
, and
Meier
,
K.
,
2010
, “
Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System
,”
ASME
Paper No. IHTC14-22817
.10.1115/IHTC14-22817
11.
Ahmed
,
F.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “
Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System
,”
ASME
Paper No. GT2011-45251.10.1115/GT2011-45251
12.
Martin
,
H.
,
1977
. “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
13.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
, 1st ed.,
Taylor & Francis
,
London.
14.
Andreini
,
A.
, and
DaSoghe
,
R.
,
2012
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
052504
.10.1115/1.4005216
15.
Soghe
,
R. D.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Micio
,
M.
, and
Tarchi
,
L.
,
2011
, “
Discharge Coefficient Characterization of Jet Array Impingement Holes for an Active Clearance Control System
,”
9th ETC Conference
,
Istanbul
,
Turkey
, March 21–25, Paper No. 252.
16.
DaSoghe
,
R.
, and
Andreini
,
A.
,
2012
, “
Numerical Characterization of Pressure Drop for Turbine Casing Impingement Cooling System
,” ASME Paper No. GT2012-68787.
17.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.10.1115/1.4001236
18.
ASME
,
1985
, “
Measurement Uncertainty
,” Instrument and Apparatus, Vol. ANSI/ASME PTC 19.1-1985 of Performance Test Code.
19.
Bacci
,
A.
, and
Facchini
,
B.
,
2007
, “
Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows
,”
ASME
Paper No. GT2007-27182
.10.1115/GT2007-27182
20.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Study of Jet-In-Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model
,”
ASME
Paper No. GT2005-68155.
10.1115/GT2005-68155
You do not currently have access to this content.