This paper presents a 3-D optimization of a moderately loaded transonic compressor rotor by means of a multiobjective optimization system. The latter makes use of a differential evolutionary algorithm in combination with an Artificial Neural Network and a 3D Navier-Stokes solver. Operating it on a cluster of 30 processors enabled the evaluation of the off-design performance and the exploration of a large design space composed of the camber line and spanwise distribution of sweep and chord length. Objectives were an increase of efficiency at unchanged stall margin by controlling the shock waves and off-design performance curve. First designs of single blade rows allowed a better understanding of the impact of the different design parameters. Forward sweep with unchanged camber improved the peak efficiency by only 0.3% with the same stall margin. Backward sweep with an optimized S shaped camber line improved the efficiency by 0.6% at unchanged stall margin. It is explained how the camber line control can introduce the same effect as forward sweep and compensate the expected negative effects of backward sweep. The best results (0.7% increase in efficiency and unchanged stall margin) have been obtained by a stage optimization that allows also a spanwise redistribution of the rotor flow and an increase of loading by extra flow turning. The latter compensates the loading shift induced by the backward sweep in order to reduce the inlet Mach number at the downstream stator hub.

References

1.
Prince
,
D. C.
,
1980
, “
Three-Dimensional Shock Structures for Transonic/Supersonic Compressor Rotors
,”
J. Aircr.
,
17
, pp.
28
37
.10.2514/3.57871
2.
Hah
,
C.
, and
Wennerstrom
,
A. J.
,
1991
, “
Three-Dimensional Flow Fields inside a Transonic Compressor with Swept Blades
,”
ASME J. Turbomach.
,
113
, pp.
241
251
.10.1115/1.2929092
3.
Yamaguchi
,
N.
,
Tominaga
,
T.
, and
Hattori
,
S.
,
1991
, “
Secondary-Loss Reduction by Forward-Skewing of Axial Compressor Rotor Blading
,”
International Gas Turbine Congress in Yokohama
.
4.
Sasaki
,
T.
, and
Breugelmans
,
F.
,
1997
, “
Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance
,” ASME Paper No. 97-GT-2.
5.
Law
,
C. H.
, and
Wadia
,
A. R.
,
1993
, “
Low Aspect Ratio Transonic Rotors: Part 1: Baseline Design and Performance
,”
ASME J. Turbomach.
,
115
, pp.
218
225
.10.1115/1.2929226
6.
Law
,
C. H.
, and
Wadia
,
A. R.
,
1993
, “
Low Aspect Ratio Transonic Rotors: Part2: Influence of Location of Maximum Thickness on Transonic Compressor Performance
,”
ASME J. Turbomach.
,
115
, pp.
226
239
.10.1115/1.2929226
7.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamics Sweep
,”
ASME J. Turbomach.
,
120
, pp.
671
682
.10.1115/1.2841776
8.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,” ASME Paper No. GT2002-30327.
9.
Blaha
,
C.
,
Kablitz
,
S.
,
Hennecke
,
D. K.
,
Schmidt-Eisenlohr
,
U.
,
Pirker
,
K.
, and
Haselhoff
,
S.
,
2000
, “
Numerical Investigation of the Flow in an Aft-Swept Transonic Compressor Rotor
,” ASME Paper No. 2000-GT-0490.
10.
Beneini
,
E.
, and
Biollo
,
R.
,
2006
, “
On the Aerodynamics of Swept and Leaned Transonic Compressor Rotors
,” ASME Paper No. GT2006-90547.
11.
Ji
,
L.
,
Chen
,
J.
, and
Lin
,
F.
,
2005
, “
Review and Understanding on Sweep in Axial Compressor Design
,” ASME Paper No. GT2005-68473.
12.
Medd
,
A. J.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
,
2003
, “
3D Inverse Design Loading Strategy for Transonic Axial Compressor Blading
,” ASME Paper No. GT2003-38501.
13.
Beneini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.10.2514/1.2703
14.
Demeulenaere
,
A.
, and
Van den Braembussche
,
R. A.
,
1998
, “
Three-dimensional Inverse Method for Turbomachinery Blading Design
,”
ASME J. Turbomach.
,
120
(
2
), pp.
247
255
.10.1115/1.2841399
15.
Watanabe
,
H.
, and
Zangeneh
,
M.
,
2003
, “
Design of the Blade Geometry of Swept Transonic Fans by 3D Inverse Design
,” ASME Paper No. GT2003-38770.
16.
Pierret
,
S.
,
1999
, “
Design Turbomachinery Blade by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm and the Navier-Stokes Equations
,” Ph.D. Thesis,
von Karman Institute
,
Belgium
.
17.
Verstraete
,
T.
,
2008
, “
Multidisciplinary Turbomachinery Component Optimization Considering Performance, Stress and Internal Heat Transfer
,” Ph.D. thesis,
von Karman Institute
,
Belgium
.
18.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
. 10.1115/1.3144162
19.
Amaral
,
S.
,
Verstraete
,
T.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade Part1: Methodology
,”
ASME J. Turbomach.
,
132
(
2
), p.
021013
.10.1115/1.3104614
20.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade Part 2: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
. 10.1115/1.3104615
21.
Joly
,
M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2010
, “
Attenuation of Vane Distortion in a Transonic Turbine using Optimization Strategies, Part I – Methodology, Part II – Optimization
,” ASME Paper Nos. GT2010-22370 and GT2010-22371.
22.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
, pp.
435
445
.10.1115/1.2929430
23.
Wadia
,
A. R.
, and
Copenhaver
,
W. W.
,
1996
, “
An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance
,”
ASME J. Turbomach.
,
118
, pp.
70
770
.10.1115/1.2840932
24.
Sirakob
,
B. T.
, and
Tan
,
C. S.
,
2002
, “
Effect of Upstream Unsteady Flow on Rotor Tip Leakage Flow
,” ASME Paper No. GT2002-358.
25.
McNulty
,
G. S.
,
Decker
,
J. J.
,
Beacher
,
B. F.
, and
Khalid
,
S. A.
,
2003
, “
The Impact of Forward Swept Rotors on Tip-Limited Low-Speed Axial Compressors
,” ASME Paper No. GT2003-38827.
You do not currently have access to this content.