An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane (NGV) at high freestream turbulence, using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a first stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech 2D Linear Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000, 0.85/1,150,000, and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000, three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by the cascade pitch of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5×) over the showerhead-only NGV and also agreement with published showerhead-shaped hole data. Net heat flux reduction (NHFR) was shown to increase substantially (average 2.6 × ) with the addition of shaped holes with an increase (average 1.6×) in required coolant mass flow. Based on the heat flux data, the boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.

References

1.
Goldstein
,
R. J.
,
Lau
,
K. Y.
, and
Leung
,
C. C.
,
1983
, “
Velocity and Turbulence Measurements in Combustion Systems
,”
Exp. Fluids
,
1
, pp.
93
99
.10.1007/BF00266261
2.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Isothermal Flow in a Gas Turbine Combustor A Benchmark Experimental Study
,”
Exp. Fluids
,
7
, pp.
344
354
.10.1007/BF00198453
3.
Reiss
,
H.
, and
Bölcs
,
A.
,
2000
, “
The Influence of the Boundary Layer State and Reynolds Number on Film Cooling and Heat Transfer on a Cooled Nozzle Guide Vane
,”
IGTI Turbo Expo, Berlin, ASME Paper No. GT-2000-205
.
4.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence: Part I— Heat Transfer
,”
ASME J. Turbomach.
,
120
, p.
768
776
.
5.
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Rawlinson
,
A. J.
,
2002
, “
Influence of Discrete Pin Shaped Surface Roughness (P-Pins) on Heat Transfer and Aerodyanmics of Film Cooled Aerofoil
,”
Proceedings of ASME Turbo Expo, Paper No. GT-2002-30179
.
6.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurement, Part II: Turbulence Effects
,”
Proceedings of ASME Turbo Expo, Paper No. GT-2002-30175
.
7.
Ou
,
S.
,
Rivir
,
R.
,
Meininger
,
M.
,
Soechting
,
F.
, and
Tabbita
,
M.
,
2000
, “
Transient Liquid Crystal Measurement of Leading Edge Film Cooling Effectiveness and Heat Transfer with High Free Stream Turbulence
,”
Proceedings of ASME Turbo Expo, Paper No. GT-2000-245
.
8.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.10.1016/0017-9310(74)90007-6
9.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
,
1996
, “
Film Cooling with Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.10.1115/1.2840938
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Heat Transfer Coefficients Measurements of Film-Cooling Holes With Expanded Exits
,”
IGTI Conference, Stockholm, ASME Paper No. 98-GT-28
.
11.
Yu
,
Y.
,
Yen
,
C. H.
,
Shih
,
T. I. P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
, pp.
820
827
.10.1115/1.1418367
12.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
, pp.
224
232
.10.1115/1.521484
13.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
,
125
, pp.
57
64
.10.1115/1.1515337
14.
Yuen
,
C. H. N.
,
Martinez-Botas
,
R. F.
, and
Whitelaw
,
J. H.
,
2001
, “
Film Cooling Effectiveness Downstream of Compound and Fan-Shaped Holes
,”
IGTI Turbo Expo, New Orleans, ASME Paper No. 2001-GT-0131
.
15.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Effect of Trench Width and Depth on Film Cooling from Cylindrical Holes Embedded in Trenches
,”
ASME J. Turbomach.
,
131
, No.
011003
.
16.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented with Antivortex Holes
,”
ASME J. Turbomach.
,
131
, No.
021007
.10.1115/1.2950059
17.
Wittig
,
S.
,
Schulz
,
A.
,
Gritsch
,
M.
, and
Thole
,
K. A.
,
1996
, “
Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations
,”
IGTI Turbo Expo, Birmingham, UK, ASME Paper No. 1996-GT-222
.
18.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.10.1115/1.2841410
19.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
, pp.
237
246
.10.1115/1.1731395
20.
Saumweber
,
C.
, and
Schulz
,
A.
,
2003
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
IGTI Turbo Expo, Atlanta, ASME Paper No. GT2003-38195
.
21.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2005
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane with Fan-Shaped Cooling Holes
,”
IGTI Turbo Expo, Reno-Tahoe, ASME Paper No. GT2005-68258
.
22.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
, pp.
23
31
.10.1115/1.2370747
23.
Chappell
,
J.
,
Ligrani
,
P.
,
Sreekanth
,
S.
, and
Lucas
,
T.
,
2008
, “
Suction-Side Gill-Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient
,”
IGTI Turbo Expo, Berlin, ASME Paper No. GT2008-50798
.
24.
Furukawa
,
T.
, and
Ligrani
,
P.
,
2002
, “
Transonic Film Cooling Effectiveness from Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
, pp.
228
237
.10.2514/2.6672
25.
Zhang
,
L.
, and
Pudupatty
,
R.
,
2000
, “
The Effects of Injection Angle and Hole Exit Shape on Turbine Nozzle Pressure Side Film Cooling
,”
IGTI Turbo Expo, Munich, ASME Paper No. 2000-GT-247
.
26.
Zhang
,
L.
, and
Moon
,
H. K.
,
2008
, “
The Effect of Wall Thickness on Nozzle Suction Side Film Cooling
,”
IGTI Turbo Expo, Berlin, ASME Paper No. GT2008-50631
.
27.
Schnieder
,
M.
,
Parneix
,
S.
, and
von Wolfersdorf
,
J.
,
2003
, “
Effect of Showerhead Injection on Superposition of Multi-Row Pressure Side Film Cooling with Fan Shaped Holes
,”
IGTI Turbo Expo, Atlanta, ASME Paper No. GT2003-38693
.
28.
Thurman
,
D. R.
,
Poinsatte
,
P. E.
, and
Heidmann
,
J. D.
,
2008
, “
Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade
,”
IGTI Turbo Expo, Berlin, ASME Paper No. GT2008-50651
.
29.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
1998
, “
The Application of Thin-Film Technology to Measure Turbine-Vane Heat Transfer and Effectiveness in a Film-Cooled, Engine-Simulated Environment
,”
Int. J. Heat Fluid Flow
,
19
, pp.
594
600
.10.1016/S0142-727X(98)10034-6
30.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
, pp.
461
471
.10.1115/1.1459736
31.
Reagle
,
C. J.
,
Newman
,
A.
,
Xue
,
S.
,
Ng
,
W.
,
Ekkad
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2010
, “
A Transient Infrared Technique for Measuring Surface and Endwall heat Transfer in a Transonic Turbine Cascade
,”
IGTI Turbo Expo, Glasgow, Paper No. GT2010-22975
.
32.
Bolchoz
,
T.
,
Nasir
,
S.
,
Reagle
,
C.
,
Ng
,
W. F.
, and
Moon
,
H. K.
,
2009
, “
An Experimental Investigation of Showerhead Film Cooling Performance In A Transonic Vane Cascade At Low and High Freestream Turbulence
,”
IGTI Turbo Expo, Orlando, Paper No. GT2009-59796
.
33.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2007
, “
Effects of Large Scale High Freestream Turbulence, and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
, pp.
021021
.10.1115/1.2952381
34.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Moon
,
H. K.
, and
Anthony
,
R. J.
,
2008
, “
Showerhead Film Cooling Performance of a Turbine Vane in a Transonic Cascade
,”
ASME IMECE 2008, Paper No. 66528
.
35.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1987
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gages
,”
Int. J. Heat Mass Transfer
,
30
, pp.
1159
1168
.10.1016/0017-9310(87)90045-7
36.
Joe
,
C. R.
,
1997
, “
Unsteady Heat Transfer on the Turbine Research Facility at Wright Laboratory
,”
Ph. D. Dissertation
,
Syracuse University
.
37.
Cress
,
R. D.
,
2006
, “
Turbine Blade Heat Transfer Measurements in a Transonic Flow Using Thin Film Gages
,”
Master’s Thesis
,
Virginia Polytechnic Institute and State University
.
38.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng.
,
W. F.
,
2000
, “
An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer
,”
IGTI Turbo Expo, Berlin, Paper No. GT-2000-203
.
39.
Newman
,
A.
,
2010
, “
Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Freestream Turbulence and Transonic Conditions
,”
Master’s Thesis
,
Virginia Polytechnic Institute and State University
.
40.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley and Sons
,
New York
.
41.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part I—Experimental Data
,”
ASME J. Heat Transfer
,
105
, pp.
33
40
.10.1115/1.3245555
42.
Ledezma
,
G. A.
,
Laskowski
,
G. M.
,
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
Overall and Adiabatic Effectiveness Values on a Scaled up Simulated Gas Turbine Vane: Part II Numerical Simulation
,”
ASME GT2011-46616
.
43.
Rigby
,
M. J.
,
Johnson
,
A. B.
, and
Oldfield
,
M. L. G.
,
1990
, “
Gas Turbine Rotor Blade Film Cooling with and without Simulated NGV Shock Waves and Wakes
,”
ASME 90-GT-78
.
44.
Teng
,
S.
,
sohn
,
D. K.
, and
Han
,
J.-C.
,
2000
, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
”,
ASME J. Turbomach.
,
122
, pp.
340
347
.10.1115/1.555457
45.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
536
.10.1115/1.2929110
46.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2007
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
IGTI Turbo Expo
,
May, 2007
,
Montreal, Canada
,
Paper No. GT2007-27071
.
47.
Mehendale
,
A. B.
, and
Han
,
J.-C.
,
1993
, “
Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
36
, pp.
3723
3730
.10.1016/0017-9310(93)90052-8
48.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Naik
,
S.
, and
Weigand
,
B.
,
2001
, “
Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance
,”
Heat Mass Transfer
,
38
,
7-6
.10.1007/s002310000149
49.
Liess
,
C.
,
1975
, “
Experimental Investigation of Fim Cooling with Ejection from a Row of Holes for the Application to Gas Turbine Blade
,”
J. Eng. Power
97
, pp.
21
27
.10.1115/1.3445904
50.
Shantanu Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2008
, “
Film-Cooling Effectiveness From Shaped Film Cooling Holes for a Gas Turbine Blade
,”
Proceedings of ASME TURBO EXPO 2008 Power for Land, Sea and Air, Paper No. GT-2008-50916
.
51.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
,
1997
, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
,
119
, pp.
302
309
.10.1115/1.2841113
52.
Arts
,
T.
, and
Bourguignon
,
A. E.
,
1990
, “
Behavior of a Coolant Film with Two Rows of Holes Along the Pressure Side of a High Pressure Nozzle Guide Vane
,”
ASME J. Turbomach.
,
112
, pp.
512
520
.10.1115/1.2927687
53.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J.-C.
, and
Lee
,
C. P.
,
1997
, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade with Air and CO2 Film Injection
,”
ASME J. Turbomach.
,
119
, pp.
594
600
.10.1115/1.2841163
54.
Drost
,
U.
, and
Bölcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distribution on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
121
, pp.
233
242
.10.1115/1.2841306
You do not currently have access to this content.