Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,”ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,” NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.

References

1.
Rau
,
G.
,
Cakan
,
M.
,
Moeller
,
D.
, and
Arts
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
, pp.
368
375
.10.1115/1.2841415
2.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels with Turbulence Promoters
,” NASA Report No. 4015.
3.
Tafti
,
D. K.
,
2004
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
26
, pp.
92
104
.10.1016/j.ijheatfluidflow.2004.07.002
4.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
, pp.
774
781
.10.1115/1.3246751
5.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
, pp.
321
328
.10.1115/1.3250487
6.
Chandra
,
P. R.
,
Han
,
J. C.
, and
Lau
,
S. C.
,
1988
, “
Effect of Rib Angle on Local Heat/mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
110
, pp.
233
241
.10.1115/1.3262186
7.
Lau
,
S. C.
,
McMillan
,
R. D.
, and
Han
,
J. C.
,
1991
, “
Turbulent Heat Transfer and Friction in a Square Channel with Discrete Rib Turbulators
,”
ASME J. Turbomach.
,
113
, pp.
360
366
.10.1115/1.2927884
8.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1991
, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-pass Rib-roughened Channel
,”
ASME J. Turbomach.
,
113
, pp.
123
130
.10.1115/1.2927730
9.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
, pp.
872
880
.10.1115/1.2928042
10.
Han
,
J. C.
,
Al-Qahtani
,
M.
, and
Chen
,
H. C.
,
2002
, “
A Numerical Study of Flow and Heat Transfer in Rotating Rectangular Channels with 45 deg Rib Turbulators by Reynolds Stress Turbulence Model
,”
Proceedings of the ASME Turbo Expo 2002
, Paper No. GT-2002-30216.
11.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.10.1016/S0017-9310(96)00318-3
12.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened on all Walls
,”
ASME J. Turbomach.
,
120
, pp.
564
570
.10.1115/1.2841754
13.
Korotky
,
G. J.
, and
Taslim
,
M. E.
,
1998
, “
Rib Heat Transfer Coefficient Measurements in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
120
, pp.
376
385
.10.1115/1.2841416
14.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45 Degree Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
, pp.
571
580
.10.1115/1.2841755
15.
Taslim
,
M. E.
, and
Korotky
,
G. J.
,
1998
, “
Low-Aspect Ratio Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J.Turbomach.
,
120
, pp.
831
838
.10.1115/1.2841796
16.
Saidi
,
A.
, and
Sunden
,
B.
,
2001
, “
On Prediction of Thermal-Hydraulic Characteristics of Square-Sectioned Ribbed Cooling Ducts
,”
ASME J. Turbomach.
,
123
, pp.
614
620
.10.1115/1.1371779
17.
Jia
,
R.
,
Saidi
,
A.
, and
Sunden
,
B.
,
2002
, “
Heat Transfer Enhancement in Square Ducts with V-Shaped Ribs of Various Angles
,”
Proceedings of the ASME Turbo Expo 2002
,
Amsterdam
,
The Netherlands
, ASME Paper No. GT-2002-30209.
18.
Iacovides
,
H.
,
Kelemenis
,
G.
, and
Raisee
,
M.
,
2003
, “
Flow and Heat Transfer in Straight Cooling Passages with Inclined Ribs on Opposite Walls: An Experimental and Computational Study
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
283
294
.10.1016/S0894-1777(02)00298-4
19.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
2002
, “
Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow
,
23
, pp.
750
757
.10.1016/S0142-727X(02)00188-1
20.
Prakash
,
C.
, and
Zerkle
,
R.
,
1995
, “
Prediction of Turbulent Flow and Heat Transfer in a Ribbed Rectangular Duct With and Without Rotation
,”
ASME J. Turbomach.
,
117
, pp.
255
264
. 10.1115/1.2835654
21.
Jang
Y.-J.
,
Chen
H.-C.
, and
Han
,
J.-C.
,
2001
, “
Flow and Heat Transfer in a Rotating Square Channel with 45 deg Angled Ribs by Reynolds Stress Turbulence Model
,”
ASME J. Turbomach.
,
123
, pp.
124
132
. 10.1115/1.1333092
22.
Chen
,
Y.
,
Nikitopoulos
,
D. E.
,
Hibbs
,
R.
,
Acharya
,
S.
, and
Myrum
,
T. A.
,
2000
, “
Detailed Mass Transfer Distribution in a Ribbed Coolant Passage With a 180 deg Bend
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1479
1492
.10.1016/S0017-9310(99)00118-0
23.
Iacovides
H.
,
1998
, “
Computation of Flow and Heat Transfer Through Rotating Ribbed Passages
,”
Int. J. Heat Fluid Flow
,
19
, pp.
393
400
.10.1016/S0142-727X(98)10023-1
24.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Ribroughened Channels
,”
ASME J. Heat Transfer
,
110
, pp.
91
98
.10.1115/1.3250478
25.
Murata
,
A.
, and
Mochizuki
,
S.
,
2001
, “
Comparison Between Laminar and Turbulent Heat Transfer in a Stationary Square Duct With Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1127
1141
.10.1016/S0017-9310(00)00180-0
26.
Abdel-Wahab
,
S.
, and
Tafti
,
D. K.
,
2004
, “
Large Eddy Simulation of Flow and Heat Transfer in a 90 deg Ribbed Duct With Rotation: Effect of Coriolis and Centrifugal Buoyancy Forces
,”
ASME J. Turbomach.
,
126
, pp.
627
636
.10.1115/1.1791648
27.
Abdel-Wahab
,
S.
, and
Tafti
,
D. K.
,
2004
, “
Large Eddy Simulation of Flow and Heat Transfer in a Staggered 45 deg Ribbed Duct
,”
Proceedings of the ASME Turbo Expo 2004
,
Vienna, Austria
, ASME Paper No. GT2004-53800.
28.
Sewall
,
E. A.
, and
Tafti
,
D. K.
,
2004
, “
Large Eddy Simulation of the Developing Region of a Stationary Ribbed Internal Turbine Blade Cooling Channel
,”
Proceedings of the ASME Turbo Expo 2004
,
Vienna, Austria
, ASME Paper No. GT2004-53832.
29.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
,
17
, pp.
1293
1313
.10.2514/3.61311
30.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
, pp.
453
480
.10.1017/S0022112070000691
31.
Schumann
,
U.
,
1975
, “
Subgrid-Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
,
18
, pp.
376
404
.10.1016/0021-9991(75)90093-5
32.
Grotzbach
,
G.
,
1987
, “
Direct Numerical and Large Eddy Simulation of Turbulent Channel Flows
,”
Encyclopedia of Fluid Mechanics
,
N. P.
,
Cheremisinoff
, ed.,
Gulf Publications
,
West Orange, NJ
, pp.
1337
1391
.
33.
Werner
,
H.
, and
Wengle
,
H.
,
1993
, “
Large-Eddy Simulation of Turbulent Flow Around a Cube in a Plane Channel
,”
Selected Papers from the 8th Symposium on Turbulent Shear Flows
.
34.
Piomelli
,
U.
,
Moin
,
P.
,
Ferziger
,
J.
, and
Kim
J.
,
1989
, “
New Approximate Boundary Conditions for Large-Eddy Simulations of Wall-bounded Flows
,”
Phys. Fluids A
,
101
, pp.
61
68
.
35.
Hoffmann
,
G.
, and
Benocci
,
C.
,
1995
, “
Approximate Wall Boundary Conditions for Large-Eddy Simulations
,”
Advance in Turbulence
,
V. R.
Benzi
, ed., pp.
222
228
.
36.
Temmerman
,
L.
,
Leschziner
,
M. A.
, and
Hanjalic
,
K.
,
2002
, “
A-priori Studies of a Near-Wall RANS Model Within a Hybrid LES/RANS Scheme
,”
Engineering Turbulence Modelling and Experiments
,
W.
Rodi
, and
N.
Fueyo
, ed.,
Elsevier
,
New York
, pp.
317
326
.
37.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings and on a Hybrid RANS/LES Approach
,”
Proceedings of the First AFSOR International Conference on DNS/LES
Aug.
4–8
,
Gryden Press
,
Arlington, TX
.
38.
Nikitin
,
N. V.
,
Nicoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
,
2000
, “
An Approach to Wall Modelling in Large-Eddy Simulations
,”
Phys. Fluids Lett.
12
, pp.
1629
1632
.10.1063/1.870414
39.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
1
20
.10.1016/j.ijheatfluidflow.2005.07.002
40.
Baggett
,
J. S.
,
1998
, “
On the Feasibility of Merging LES With RANS in the Near-Wall Modeling in Large-Eddy Simulations
,”
Annual Research Briefs, Center for Turbulence Research
,
Stanford, CA
, pp.
267
277
.
41.
Balaras
,
E.
, and
Benocci
,
C.
,
1994
,
Subgrid-Scale Models in Finite-Difference Simulations of Complex Wall Bounded Flows
,
AGARD, Neuilly-Sur-Seine
,
France
.
42.
Balaras
,
E.
,
Benocci
,
C.
, and
Piomelli
,
U.
,
1996
, “
Two Layer Approximate Boundary Conditions for Large-Eddy Simulations
,”
AIAA J.
,
34
, pp.
1111
1119
.10.2514/3.13200
43.
Cabot
,
W.
, and
Moin
,
P.
,
1999
, “
Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flow
,”
Flow, Turbul., Combust
63
, pp.
269
291
.10.1023/A:1009958917113
44.
Wang
,
M.
, and
Moin
,
P.
,
2002
, “
Dynamic Wall Modelling for Large-Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
14
(
7
), pp.
2043
2051
.10.1063/1.1476668
45.
Tessicini
,
F.
,
Li
,
N.
, and
Leschziner
,
M. A.
,
2007
, “
Large-Eddy Simulation of Three-Dimensional Flow Around a Hill-Shaped Obstruction With a Zonal Near-Wall Approximation
,”
Int. J. Heat Fluid Flow
28
, pp.
894
908
.10.1016/j.ijheatfluidflow.2007.01.006
46.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
3
, pp.
1760
1765
.10.1063/1.857955
47.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid Scale Closure Method
,”
Phys. Fluids
,
A4
, pp.
633
635
.
48.
Patil
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Wall Modeled Large-Eddy Simulation of High Reynolds Number Complex Flows With Synthetic Inlet Turbulence
,”
Int. J. Heat Fluid Flow (to be published)
.
49.
Kays
,
W. M.
,
1992
, “
Turbulent Prandtl Number – Where We Are?
Max Jakob Memorial Award Lecture
, pp.
1
12
.
50.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluids Engineering Division, FED, ASME-IMECE, November 2001
,
New York
, p.
256
.
51.
Tafti
,
D. K.
,
2010
, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Advances in Computational Fluid Dynamics and Heat Transfer
;” (Developments in Heat Transfer),
R.
Amano
and
B.
Sunden
, eds.,
WIT
,
Southampton, UK
(to be published).
52.
Moser
,
R.
,
Kim
,
J.
, and
Mansour
N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
53.
Patil
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Wall Modeled Large Eddy Simulation of High Reynolds Number Flows
,”
Proceedings of AIAA Aerospace Science Meeting
, Paper No. 896435.
54.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
CA
.
55.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2001
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
You do not currently have access to this content.