The aerothermal performance of a winglet tip with cooling holes on the tip and on the blade surface near the tip is reported in this paper. The investigation was based on a high pressure turbine cascade. Experimental and numerical methods were used. The effects of the coolant mass flow rate are also studied. Because the coolant injection partially blocks the tip leakage flow, more passage flow is turned by the blade. As a result, the coolant injection on the winglet tip reduces the deviation of the flow downstream of the cascade due to the tip leakage flow. However, the tip leakage loss increases slightly with the coolant mass flow ratio. Both the computational fluid dynamics tools and experiments using the Amonia–Diazo technique were used to determine the cooling effectiveness. On the blade pressure side surface, low cooling effectiveness appears around the holes due to the lack of the coolant from the cooling hole or the lift-off of the coolant from the blade surface when the coolant mass flow is high. The cooling effectiveness on the winglet tip is a combined effect of the coolant ejected from all the holes. On the top of the winglet tip, the average cooling effectiveness increases and the heat load decreases with increasing coolant mass flow. Due to its large area, the cooled winglet tip has a higher heat load than an uncooled flat tip at engine representative coolant mass flow ratio. Nevertheless, the heat flux rate per unit area of the winglet is much lower than that of an uncooled flat tip. The cycle analysis is carried out and the effects of relative tip-to-casing endwall motion are address.

References

1.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
, and
Power
,
B.
,
2010
, “
Aeromechanical Optimisation of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME
Paper No. GT2010-23542.10.1115/GT2010-23542
2.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1991
, “
Measurements of the Effects of Winglets on Tip-Leakage Losses in a Linear Turbine Cascade
,”
ASME
Paper No. ISABE 91-7011.
3.
Liu
,
H. C.
,
Booth
,
T. C.
, and
Tall
,
W. A.
,
1979
, “
An Application of 3-D Viscous Flow Analysis to the Design of a Low-Aspect-Ratio Turbine
,”
ASME Paper No. 79-GT-53
.
4.
Harvey
,
N. W.
,
2004
, “
Turbine Blade Tip Design and Tip Clearance Treatment
,”
VKI Lecture Series
VKI-LS 2004-02, Brussels, January 19–23.
5.
Dey
,
D.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Tip Desensitization of an Axial Turbine Rotor Using Tip Platform Extensions
,”
ASME Paper No. 2001-GT-0484
.
6.
Harvey
,
N.
,
Newman
,
D.
, and
Haselbach
,
F.
,
2006
, “
An Investigation Into a Novel Turbine Rotor Winglet: Part I—Design and Model Rig Test Results
,”
ASME
Paper No. GT2006-90456.10.1115/GT2006-90456
7.
Papa
,
M.
,
Glodstein
,
R. J.
, and
Gori
,
F.
,
2003
, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
, pp.
90
96
.10.1115/1.1529190
8.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M.
,
Ligrani
,
P.
,
Cheong
,
B.
, and
Tibbott
,
I.
,
2010
, “
Aero-Thermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME
Paper No. GT2010-22794.10.1115/GT2010-22794
9.
Hohlfeld
,
E. M.
,
Christophel
,
J. R.
,
Couch
,
E. L.
, and
Thole
,
K. A.
,
2003
, “
Predictions of Cooling From Dirt Purge Holes Along the Tip of a Turbine Blade
,”
ASME
Paper No. GT2003-38251.10.1115/GT2003-38251
10.
Zhou
,
C.
, and
Hodson
,
H.
,
2009
, “
The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling
,”
ASME
Paper No. GT2009-59637.10.1115/GT2009-59637
11.
Hofer
,
T.
,
Legrand
,
M.
,
Pons
,
L.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Leakage Flow For a Blade With a Squealer Tip at Transonic Condition
,”
8th European Turbomachinery Conference
,
Graz, Austria
, March 23–27.
12.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME
Paper No. GT2009-59909.10.1115/GT2009-59909
13.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995b
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
, pp.
12
21
.10.1115/1.2835630
14.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2007
, “
Aero-Thermal Investigation of Tip Leakage Flow in Axial Flow Turbines: Part III—Film Cooling
,”
ASME
Paper No. GT-2007-27368.10.1115/GT2007-27368
15.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part I: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
127
, pp.
270
277
.10.1115/1.1812320
16.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part II: Heat Transfer Measurements
,”
ASME J. Turbomach.
,
127
, pp.
278
286
.10.1115/1.1811096
17.
Ahn
,
J.
,
Mhertras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
127
, pp.
521
530
.10.1115/1.1811098
18.
Zhang
,
Q.
,
O’Dowd
,
D
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
, pp.
041027
041035
.10.1115/1.4003063
19.
Zhang
,
Q.
,
O’Dowd
,
D
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P.
, and
Cheong
,
B.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Heat Transfer
,”
ASME J. Turbomach.
,
133
, pp.
041001
041009
.10.1115/1.4002949
20.
O’Dowd
,
D.
,
Zhang
,
Q.
,
Ligrani
,
P.
,
He
,
L.
, and
Friedrichs
,
S.
,
2009
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME
Paper No. GT2009-59376.10.1115/GT2009-59376
21.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2009
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME
Paper No. GT2009-59404.10.1115/GT2009-59404
22.
Key
,
N.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
, pp.
213
220
.10.1115/1.2162183
23.
Chen
,
G.
,
Dawes
,
W. N.
, and
Hodson
,
H. P.
,
1993
, “
Numerical Analysis of Tip Gap Flow
,”
AIAA-93-2253, AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference & Exhibit
Monterey, CA, June 28–30.
24.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
, pp.
613
621
.10.1115/1.2840916
25.
Shadid
,
J. N.
, and
Eckert
,
E. R. G.
,
1991
, “
The Mass Transfer Analogy to Heat Transfer in Fluids With Temperature-Dependent Properties
,”
ASME J. Turbomach.
, pp.
27
33
.10.1115/1.2927734
26.
Zhou
,
C.
, and
Hodson
,
H.
,
2009
, “
The Aerodynamic Performance of the Tip Leakage Flow With Different Tip Geometries
,”
Proceedings of the 8th European Turbomachinery Conference
, Graz, Austria, March 23–27, pp.
1469
1481
.
27.
Zhou
,
C.
, and
Hodson
,
H.
,
2009
, “
Numerical Investigation of Thermal Performance of Unshrouded HP Turbine Blade Tips
,”
Int. J. Turbo Jet Engines
,
26
, pp.
227
284
.10.1515/TJJ.2009.26.4.277
28.
Dey
,
D.
,
2001
, “
Tip Desensitization in an Axial Flow Turbine
,”
Ph.D. thesis, The Pennsylvania State University
, University Park, PA.
29.
Rao
,
N.
, and
Camci
,
C.
,
2004a
, “
Axial Flow Turbine Tip Desensitization by Injection From a Tip Trench: Part 1—Effect of Injection Mass Flow Rate
,”
ASME
Paper No. GT2004-53256.10.1115/GT2004-53256
30.
Kurzke
,
J.
, “
Design and Off-Design Performance of Gas Turbines
,”
2007
,
Gasturb 11 Manual
,
Germany
.
31.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
, “
Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine
,”
ASME
Paper No. GT2011-46373.10.1115/GT2011-46373
You do not currently have access to this content.