Modern lean burn combustors now employ aggressive swirlers to enhance fuel-air mixing and improve flame stability. The flow at combustor exit can therefore have high residual swirl. A good deal of research concerning the flow within the combustor is available in open literature. The impact of swirl on the aerodynamic and heat transfer characteristics of an HP turbine stage is not well understood, however. A combustor swirl simulator has been designed and commissioned in the Oxford Turbine Research Facility (OTRF), previously located at QinetiQ, Farnborough UK. The swirl simulator is capable of generating an engine-representative combustor exit swirl pattern. At the turbine inlet plane, yaw and pitch angles of over ±40 deg have been simulated. The turbine research facility used for the study is an engine scale, short duration, rotating transonic turbine, in which the nondimensional parameters for aerodynamics and heat transfer are matched to engine conditions. The research turbine was the unshrouded MT1 design. By design, the center of the vortex from the swirl simulator can be clocked to any circumferential position with respect to HP vane, and the vortex-to-vane count ratio is 1:2. For the current investigation, the clocking position was such that the vortex center was aligned with the vane leading edge (every second vane). Both the aligned vane and the adjacent vane were characterized. This paper presents measurements of HP vane surface and end wall heat transfer for the two vane positions. The results are compared with measurements conducted without swirl. The vane surface pressure distributions are also presented. The experimental measurements are compared with full-stage three-dimensional unsteady numerical predictions obtained using the Rolls Royce in-house code Hydra. The aerodynamic and heat transfer characterization presented in this paper is the first of its kind, and it is hoped to give some insight into the significant changes in the vane flow and heat transfer that occur in the current generation of low NOx combustors. The findings not only have implications for the vane aerodynamic design, but also for the cooling system design.

References

1.
Gupta
,
A. K.
,
Lewis
,
M. J.
, and
Daurer
,
M.
,
2001
, “
Swirl Effects on Combustion Characteristics of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
619
626
.10.1115/1.1339987
2.
Li
,
G.
, and
Gutmark
,
E. J.
,
2004
, “
Effects of Swirler Configurations on Flow Structures and Combustion Characteristics
,”
ASME
Paper No. GT2004-53674.10.1115/GT2004-53674
3.
Huang
,
Y.
, and
Yang
,
V.
,
2005
, “
Effects of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
30
, pp.
1775
1782
.10.1016/j.proci.2004.08.237
4.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2001
, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
,
123
, pp.
510
518
.10.1115/1.1370157
5.
Corriveau
,
D.
, and
Sjolander
,
S. A.
,
2004
, “
Influence of Loading Distribution on the Performance of Transonic High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
, pp.
288
296
.10.1115/1.1645534
6.
Corriveau
,
D.
, and
Sjolander
,
S. A.
,
2007
, “
Influence of Loading Distribution on the Off-Design Performance of High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
129
, pp.
563
571
.10.1115/1.2464145
7.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.10.1115/1.2835631
8.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2004
, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomachinery
,
126
, pp.
277
287
.10.1115/1.1645533
9.
Goldstein
,
R. J.
,
Lau
,
K. Y.
, and
Leung
,
C. C.
,
1983
, “
Velocity and Turbulence Measurements in Combustion Systems
,”
Exp. Fluids
,
1
, pp.
93
99
.10.1007/BF00266261
10.
Hancock
,
P. E.
, and
Bradshaw
,
P.
,
1983
, “
The Effect of Freestream Turbulence on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
105
, pp.
284
289
.10.1115/1.3240989
11.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Men Profile Development, Part II—Analysis of Results
,”
ASME J. Heat Transfer
,
105
, pp.
41
47
.10.1115/1.3245557
12.
Krishnamoorthy
,
V.
, and
Sukhatme
,
S. P.
,
1989
, “
The Effect of Freestream Turbulence on Gas Turbine Blade Heat Transfer
,”
ASME J. Turbomach.
,
111
, pp.
497
501
.10.1115/1.3262299
13.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
,
2003
, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
, pp.
221
231
.10.1115/1.1559898
14.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
, pp.
107
118
.10.1115/1.1424891
15.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
, pp.
021021
1
-11.10.1115/1.2952381
16.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
17.
Sieverding
,
C. H.
,
1985
, “
Secondary Flows in Straight and Annular Turbine Cascades
,”
Thermodynamics and Fluid Mechanics of Turbo
, Vol.
2 (A86-29376 12-02)
,
Martinus Nijhoff Publishers
,
Dordrecht, Germany
, pp.
621
664
.
18.
Yilmaz
,
M.
,
Comakli
,
O.
, and
Yapici
,
S.
,
1999
, “
Enhancement of Heat Transfer by Turbulent Decaying Swirl Flow
,”
Energy Convers. Manage.
,
40
, pp.
1365
1376
.10.1016/S0196-8904(99)00030-8
19.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
, pp.
295
309
.10.1016/0894-1777(95)00066-U
20.
Jones
,
T. V.
,
Schultz
,
D. L.
, and
Hendley
,
A. D.
,
1973
On the Flow in an Isentropic Light Piston Tunnel
,”
MoD (Proc Exec), Aeronautical Research Council R&M No. 3731
.
21.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
,
1992
, “
An Axial Turbobrake
,”
ASME J. Turbomach.
,
114
(
2
), pp.
419
425
.10.1115/1.2929160
22.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Andrew
,
S. J.
, and
Smith
,
G. C.
,
1994
, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,”
ASME Paper No. 94-GT-277
.
23.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
,
2003
, “
The Design and Performance of a Transonic Flow Deswirling System: An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments
,” Advances of CFD in Fluid Machinery Design, R. Elder, A. Tourlidakis, and M. Yates, eds., John Wiley & Sons, Hoboken, NJ, pp.
65
94
.
24.
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
A Combustor-Representative Swirl Simulator for a Transonic Turbine Research Facility
,”
Proceedings of the IMechE, Part G: J. Aerosp. Eng.
,
225
(7)
, pp.
737
748
.10.1177/0954410011400817
25.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1987
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1159
1168
.10.1016/0017-9310(87)90045-7
26.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
, pp.
021023-1
9
.10.1115/1.2752188
27.
Oldfield
,
M. L. G.
,
Burd
,
H. J.
, and
Doe
,
N. G.
,
1984
,
Design of Wide-Bandwidth Analogue Circuits for Heat Transfer Instrumentation in Transient Tunnels. Heat and Mass Transfer in Rotating Machinery
,
(A86-24451 09-34)
,
Hemisphere Publishing Corp.
,
Washington, DC
, pp.
233
258
.
28.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
,
1978
, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-14
(
5
), pp.
738
749
.10.1109/TAES.1978.308624
29.
Povey
,
T.
,
2003
, “
On Advances in Annular Cascade Techniques
,”
Ph.D. thesis
,
Department of Engineering Science, University of Oxford, Oxford, UK
.
30.
Moinier
,
P.
, and
Giles
,
M. B.
,
1998
, “
Preconditioned Euler and Navier-Stokes Calculations on Unstructured Grids
,”
Proceedings of the 6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford, UK
.
31.
Moinier
,
P.
,
Mueller
,
J.-D.
, and
Giles
,
M. B.
,
2002
, “
Edge Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.10.2514/2.1556
32.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flows With a Multigrid Method
,”
Ph.D. thesis
,
Department of Mechanical and Aerospace Engineering, Princeton University
,
NJ
.
33.
Mueller
,
J.-D.
, and
Giles
,
M. B.
,
1998
, “
Edge-Based Multigrid Schemes for Hybrid Grids
,”
Proceedings of the 6th ICFD Conference on Numerical Methods for Fluid Dynamics.
Oxford, UK
, March 31–April 3.
34.
Chana
,
K. S.
,
1992
, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane With Profile End Walls
,”
ASME Paper No. 92-GT-243
.
35.
Beard
,
P. F.
,
2010
, “
On Transient Turbine Efficiency Measurements With Engine Representative Inlet Flows
,”
Ph.D. thesis
,
Department of Engineering Science, University of Oxford, Oxford, UK
.
36.
Harvey
,
N. W.
, and
Jones
,
T. V.
,
1990
, “
Measurement and Calculation of End Wall Heat Transfer and Aerodynamics on a Nozzle Guide Vane in Annular Cascade
,”
ASME Paper No. 90-GT-301
.
You do not currently have access to this content.