The impact of film cooling on heat transfer is investigated for the high-pressure vane of a 1-1/2 stage high-pressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer end wall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil, in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently. All results reported in this part of the paper are for a radial inlet temperature profile, one of the four profiles reported in part I of this paper. Part I describes the experimental setup, data quality, influence of inlet temperature profile, and influence of cooling when compared to a solid vane. This part of the paper shows that the addition of coolant reduces airfoil Stanton number by up to 60%. The largest reductions due to cooling are observed close to the inner end wall because the coolant to the majority of the vane is supplied by a plenum at the inside diameter. While the introduction of cooling has a significant impact on Stanton number, the impact of changing coolant flow rates is only observed for gauges near 5% span and on the inner end wall. This indicates that very little of the increased coolant mass flow reaches all the way to 90% span and the majority of the additional mass flow is injected into the core flow near the plenum. Turning off the vane outer cooling circuit that supplies coolant to the outer end wall holes, vane trailing edge slots, and three rows of holes on the pressure surface of the airfoil, has a local impact on Stanton number. Changes downstream of the holes on the airfoil pressure surface indicate that internal heat transfer from the coolant flowing inside the vane is important to the external heat transfer, suggesting that a conjugate heat-transfer solution may be required to achieve good external heat-transfer predictions in this area. Measurements on the inner end wall show that temperature reduction in the vane wake due to the trailing edge cooling is important to many points downstream of the vane.

References

1.
Goldstein
,
R. J.
,
1971
,
Film Cooling. Advances in Heat Transfer
,
T. F.
,
Irvine
and
J. P.
,
Hartnett
, Eds.
Academic
,
New York
, Vol.
7
, pp.
321
379
.
2.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME Turbo Expo, Orlando, FL, GT2009-60306
.
3.
Jonsson
,
M.
,
Charbonnier
,
D.
,
Ott
,
P.
, and
von Wolfersdorf
,
J.
,
2008
, “
Application of the Transient Heater Foil Technique for Heat Transfer and Film Cooling Effectiveness Measurements on a Turbine Vane Endwall
,”
ASME Turbo Expo, Berlin, Germany, GT2008-50451
.
4.
Kost
,
F.
, and
Mullaert
,
A.
,
2006
, “
Migration of Film-Coolant from Slot and Hole Ejection at a Turbine Vane Endwall
,”
ASME Paper No. GT2006-90355
.
5.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
6.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schüpbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
. 10.1115/1.3106706
7.
Beard
,
P. F.
,
Povey
,
T.
, and
Chana
,
K. S.
,
2010
, “
Turbine Efficiency Measurement System for the QinetiQ Turbine Test Facility
,”
ASME J. Turbomach.
,
132
, p.
011002
.10.1115/1.3066271
8.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining the Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
, pp.
658
667
.10.1115/1.2218890
9.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
9
, pp.
524
529
.10.1115/1.3450239
10.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
, pp.
866
874
.10.1115/1.3230352
11.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
12.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.10.1115/1.2840916
13.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
. 10.1115/1.2841189
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach
., 121
(4)
, pp.
772
780
. 10.1115/1.2836731
15.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
, pp.
720
729
.10.1115/1.1397308
16.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME J. Turbomach.
,
123
, pp.
709
719
.10.1115/1.1400112
17.
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
Effects of Hot Streaks on Adiabatic Effectiveness for a Film Cooled Turbine Vane
,”
ASME Paper No. GT2004-54016
.
18.
Barringer
,
M.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021010
. 10.1115/1.2950076
19.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(2)
, p.
021009
. 10.1115/1.2950072
20.
Polanka
,
M. D.
,
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. M.
,
2000
, “
Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes
,”
ASME Paper No. 2000-GT-240
.
21.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine—Part I: Influence of Vane Cooling and Disk Cavity Purge Flow
,”
ASME J. Turbomach.
,
134
(
3
), p.
031014
.10.1115/1.4003173
22.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Heat Transfer for the Blade of a Cooled One and One-Half Stage High-Pressure Turbine—Part II: Influence of Purge Cooling Variation
,”
ASME J. Turbomach.
,
134
(
3
),p.
031015
.10.1115/1.4003174
23.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.10.1115/1.4002994
24.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part II: Influence of Inlet Temperature Profile on Blade Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011007
.10.1115/1.4002995
25.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2010
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part III: Impact of Hot Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011008
.10.1115/1.4002996
26.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling with Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.10.1115/1.2840937
27.
Kahveci
,
H. S.
,
2010
, “
The Influence of Film Cooling and Inlet Temperature Profile on Heat Transfer for the Vane Row of a 1-1/2 Stage Transonic High-Pressure Turbine
Ph.D. dissertation, Department of Mechanical Engineering
,
Ohio State University
,
Ohio
.
You do not currently have access to this content.