The experimental and numerical heat transfer results in a trapezoidal duct with two staggered rows of inclined impingement jets are presented. The influence of changes in the jet bore geometry on the wall heat transfer is examined. The goal of this project is to minimize the thermal load in an internal gas turbine blade channel and to provide sufficient cooling for local hot spots. The dimensionless pitch is varied between p/djet=3 − 6. For p/djet=3, cylindrical and conically narrowing bores with a cross section reduction of 25% and 50%, respectively, are investigated. The studies are conducted at 10,000Re75,000. Experimental results are obtained using a transient thermochromic liquid crystal technique. The numerical simulations are performed solving the RANS equations with FLUENT using the low- Re k- ω -SST turbulence model. The results show that for a greater pitch, the decreasing interaction between the jets leads to diminished local wall heat transfer. The area averaged Nusselt numbers decrease by up to 15% for p/djet=4.5, and up to 30% for p/djet=6, respectively, if compared to the baseline pitch of p/djet=3. The conical bore design accelerates the jets, thus increasing the area-averaged heat transfer for identical mass-flow by up to 15% and 30% for the moderately and strongly narrowing jets, respectively. A dependency of the displacement between the Nu maximum and the geometric stagnation point from the jet shear layer is shown.

References

1.
Weigand
,
B.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2001
, “
Heat Transfer in Gas Turbine Systems (Annals of the New York Academy of Sciences), R. J. Goldstein, ed., New York Academy of Sciences, New York, Vol. 934
,”
Heat Transfer Gas Turbine Syst.
,
934
, pp.
179
193
.10.1111/j.1749-6632.2001.tb05851.x
2.
Han
,
J. C.
and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling
,”
Heat Transfer Gas Turbine Syst.
,
934
, pp.
162
178
.10.1111/j.1749-6632.2001.tb05850.x
3.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
4.
Han
,
B.
and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Heat Transfer Gas Turbine Syst.
,
934
, pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
5.
Zuckerman
,
N.
and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
, pp.
544
552
.10.1115/1.1861921
6.
Zuckerman
,
N.
and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
7.
Weigand
,
B.
and
Spring
,
S.
,
2009
, “
Multiple Jet Impingement—A Review
,”
International Symposium on Heat Transfer in Gas Turbine Systems
,
Aug.
9–14
,
Antalya, Turkey
.
8.
Hollworth
,
B. R.
and
Berry
,
R. D.
,
1978
, “
Heat Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
ASME J. Heat Transfer
,
100
(
2
), pp.
352
357
.10.1115/1.3450808
9.
Huber
,
A. M.
and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat-Transfer to Confined, Impinging Arrays of Axisymmetrical Air-Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
10.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
,
2000
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jets
,”
Proceedings of ASME Turbo Expo 2000
,
May
8–11
,
Munich, Germany
, ASME Paper No. 2000-GT-220.
11.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetrical, Impinging Free-Surface Liquid Jets—Part 2: Local Heat-Transfer
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
880
886
.10.1115/1.2911896
12.
Brignoni
,
L. A.
and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
13.
Royne
,
A.
and
Dey
,
C. J.
,
2006
, “
Effect of Nozzle Geometry on Pressure Drop and Heat Transfer in Submerged Jet Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
800
804
.10.1016/j.ijheatmasstransfer.2005.11.014
14.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2009
, “
Heat Transfer in a Confined Oblique Jet Impingement Configuration
,”
Proceedings of ASME Turbo Expo 2009
,
June
8–121
,
Orlando, Florida, USA
, ASME Paper No. GT2009-59354.
15.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2010
, “
Heat Transfer Characteristics of an Oblique Jet Impingement Configuration in a Passage with Ribbed Surfaces
,”
Proceedings of ASME Turbo Expo 2010
,
June
14–18
,
Glasgow, UK
, ASME Paper No. GT2010-22288.
16.
Ireland
,
P. T.
and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.10.1088/0957-0233/11/7/313
17.
Schultz
,
D.
and
Jones
,
T.
,
1973
, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,”
NATO Advisory Group Aeronautical RD AGARDograph
,
165
, pp.
1
149
.
18.
Ekkad
,
S. V.
and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
19.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
A6
), pp.
793
801
.10.1243/09576509JPE464
20.
Hoefler
,
F.
,
Dietrich
,
N.
, and
von Wolfersdorf
,
J.
,
2010
, “
Heat Transfer Experiments in a Confined Jet Impingement Configuration Using Transient Techniques
Proceedings of the 14th International Heat Transfer Conference
,
August
8–13
,
Washington, DC, USA
, Paper No. IHTC14-22305.
21.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
22.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.10.1016/j.ijheatfluidflow.2004.08.011
23.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
24.
Rao
,
G.
,
Kitron-Belinkov
,
M.
, and
Levy
,
Y.
,
2009
, “
Numerical Analysis of a Multiple Jet Impingement System
,”
Proceedings of the ASME Turbo Expo 2009
,
June
8–12
,
Orlando, Florida, USA
, Paper No. GT2009-59719.
25.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
, and
Maltson
,
J.
,
2009
, “
Numerical Study on Stagnation Point Heat Transfer by Jet Impingement in a Confined Narrow Gap
,”
ASME J. Heat Transfer
,
131
(
9
), p.
094504
.10.1115/1.3139183
26.
Roache
,
P. J.
,
1994
, “
Perspective—A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
You do not currently have access to this content.