An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Ligrani
,
P. M.
,
Oliveira
,
O.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
, pp.
337
361
.10.2514/2.1964
3.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
ASME
Paper No. GT2003-38935.10.1115/GT2003-38935
4.
Chyu
,
M. K.
,
Yu
,
Y.
, and
Ding
,
H.
,
1999
, “
Heat Transfer Enhancement in Rectangular Channels With Concavities
,”
J. Enhanced Heat Transfer
,
6
(
6
), pp.
429
439
.
5.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME Paper No. 97-GT-437
.
6.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
307
313
.10.1115/1.483208
7.
Lin
,
Y. L.
,
Shih
,
T. I-P.
, and
Chyu
,
M. K.
,
1999
, “
Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities
,”
ASME Paper No. 99-GT-263
.
8.
Mahmood
,
G. I.
,
Hill
,
H. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
, pp.
115
123
.10.1115/1.1333694
9.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
10.
Burgess
,
N. K.
,
Oliveria
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
,
125
, pp.
11
18
.10.1115/1.1527904
11.
Ligrani
,
P. M.
,
Burgess
,
N. K.
, and
Won
,
S. Y.
,
2004
, “
Nusselt Numbers and Flow Structure On and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
ASME
Paper No. GT2004-54231.10.1115/GT2004-54231
12.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
, pp.
555
564
.10.1115/1.1571850
13.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2002
, “
Turbulent Heat Transfer Measurements on a Wall With Concave and Cylindrical Dimples in a Square Channel
,”
ASME
Paper No. GT2002-30208.10.1115/GT2002-30208
14.
Borisov
,
I.
,
Khalatov
,
A.
,
Kobzar
,
S.
, and
Glezer
,
B.
,
2004
, “
Comparison of Thermo-Hydraulic Characteristics for Two Types of Dimpled Surfaces
,”
ASME
Paper No. GT2004-54204.10.1115/GT2004-54204
15.
Zhou
,
F.
, and
Acharya
,
S.
,
2009
, “
Experimental and Computational Study of Heat / Mass Transfer and Flow Structure for Four Dimple Shapes in a Square Internal Passage
,”
ASME
Paper No. GT2009-60240.10.1115/GT2009-60240
16.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
, pp.
957
968
.10.1088/0957-0233/11/7/312
17.
Liu
,
T.
, and
Sullivan
,
J. P.
,
2005
,
Pressure and Temperature Sensitive Paints
,
Springer
,
Berlin
.
18.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005-72363.10.1115/HT2005-72363
19.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
, pp.
597
603
.10.1115/1.1791283
20.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,”
ASME
Paper No. IMECE2005-80146.10.1115/IMECE2005-80146
21.
Wright
,
L. M.
, and
Gohardani
,
A. S.
,
2009
, “
Effect of Coolant Ejection in Rectangular and Trapezoidal Trailing Edge Cooling Passages
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
316
326
.10.2514/1.38426
22.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1993
, “
Evaluation of a Hue Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces
,”
ASME J. Heat Transfer
,
115
(
2
), pp.
311
318
.10.1115/1.2910681
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
24.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
628
635
.10.1115/1.3239782
25.
Tanda
,
G.
,
2003
, “
Heat Transfer in Rectangular Channels With Transverse and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
47
, pp.
229
243
.10.1016/S0017-9310(03)00414-9
26.
Wright
,
L. M.
, and
Gohardani
,
A. S.
,
2008
, “
Effect of Turbulator Width and Spacing on the Thermal Performance of Angled Ribs in a Rectangular Channel (AR = 3:1)
,”
ASME
Paper No. IMECE2008-66842.10.1115/IMECE2008-66842
You do not currently have access to this content.