Coal ash deposition was numerically modeled on a GE-E3 high pressure turbine vane passage. A model was developed, in conjunction with FLUENT™ software, to track individual particles through the turbine passage. Two sticking models were used to predict the rates of deposition which were subsequently compared to experimental trends. The strengths and limitations of the two sticking models, the critical viscosity model and the critical velocity model, are discussed. The former model ties deposition exclusively to particle temperature while the latter considers both the particle temperature and velocity. Both incorporate some level of empiricism, though the critical viscosity model has the potential to be more readily adaptable to different ash compositions. Experimental results show that both numerical models are reasonably accurate in predicting the initial stages of deposition. Beyond the initial stage of deposition, for which transient effects must be accounted.

References

1.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
, p.
021004
.10.1115/1.3066315
2.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
,
pp.
522
529
.10.1115/1.2841749
3.
Kim
,
J.
,
Dunn
,
M. G.
, and
Baran
,
A. J.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
,
pp.
641
651
.10.1115/1.2906754
4.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
,
pp.
724
731
.10.1115/1.2816987
5.
Sundaram
,
N.
, and
Thole
,
K.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
,
pp.
599
607
.10.1115/1.2720485
6.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.10.1115/1.4001190
7.
Lawson
,
S. A.
, and
Thole
,
K.
,
2009
, “
The Effects of Simulated Particle Deposition on Film Cooling
,”
Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air (GT2009)
,
Orlando, FL
,
June
8–12
,
ASME
Paper No. GT2009-59109
.10.1115/GT2009-59109
8.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
,
pp.
462
470
.10.1115/1.1860380
9.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
051503
.10.1115/1.2903901
10.
Smith
,
C.
,
Barker
,
B.
,
Clum
,
C.
, and
Bons
,
J. P.
,
2010
, “
Deposition in a Turbine Cascade With Combusting Flow
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air (GT2010)
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22855
.10.1115/GT2010-22855
11.
Hossain
,
A.
, and
Naser
,
J.
,
2004
, “
CFD Investigation of Particle Deposition Around Bends In a Turbulent Flow
,”
Proceedings of the 15th Australasian Fluid Mechanics Conference
, Sydney, Australia, December 13–17.
12.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
,
1991
, “
Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
),
p.
607
.10.1115/1.2906284
13.
Longmire
,
P.
,
2007
, “
Computational Fluid Dynamics (CFD) Simulations of Aerosol in a U-Shaped Steam Generator Tube
,”
Ph.D. thesis
,
Texas A&M University
,
Austin, TX
.
14.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air (GT2002), Amsterdam, Netherlands
, June 3–6,
ASME
Paper No. GT-2002-30600
.10.1115/GT2002-30600
15.
Ai
,
W.
,
2009
, “
Deposition of Particulate From Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes
,”
Ph.D. thesis
,
Brigham Young University
,
Provo, UT
.
16.
Tafti
,
D. K.
, and
Sreedharan
,
S. S.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, (GT2010)
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-23655.10.1115/GT2010-23655
17.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2011
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part I—Experimental Characteristics of Four Coal Ash Types
,”
Proceedings of the ASME Turbo Expo 2011: Power for Land, Sea, and Air
,
Vancouver, BC, Canada
,
June
14–18
,
ASME
Paper No. GT2011-45894
.10.1115/GT2011-45894
18.
Zhang
,
Z.
, and
Chen
,
Q.
,
2007
, “
Comparison of the Eulerian and Lagrangian Methods for Predicting Particle Transport in Enclosed Spaces
,”
Atmos. Environ.
,
41
(
25
),
pp.
5236
5248
.10.1016/j.atmosenv.2006.05.086
19.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
20.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J.K.
,
1994
, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
,
277
,
pp.
109
134
.10.1017/S0022112094002703
21.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
,
1995
, “
Particle Behavior in the Turbulent Boundary Layer. I. Motion, Deposition, and Entrainment
,”
Phys. Fluids
,
7
,
pp.
1095
1106
.10.1063/1.868551
22.
Dehbi.
A
,
2008
, “
A CFD Model for Particle Dispersion in Turbulent Boundary Layer Flows
,”
Nucl. Eng. Des.
,
238
,
pp.
707
715
.10.1016/j.nucengdes.2007.02.055
23.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High Pressure Turbine Deposition in Land-Based Gas Turbines With Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
,
pp.
135
143
.10.1115/1.2181181
24.
Rudinger
,
G.
,
1980
,
Fundamentals of Gas-Particle Flow
,
Elsevier Scientific
,
Amsterdam
.
25.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
),
pp.
277
283
.10.1021/ef00050a010
26.
N'Dala
,
I.
,
Cambier
,
F.
,
Anseau
,
M. R.
, and
Urbain
,
G.
,
1984
, “
Viscosity of Liquid Feldspars. Part I: Viscosity Measurements
,”
Br. Ceram. Trans. J.
,
83
,
pp.
108
112
.
27.
El-Batsh
,
H.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,”
Ph.D. thesis
,
Vienna University of Technology
,
Vienna, Austria
.
28.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2009
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air (GT2009)
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59573
.10.1115/GT2009-59573
29.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms
,”
J. Adhes. Sci. Technol.
,
8
(
7
),
pp.
763
785
.10.1163/156856194X00799
30.
Das
,
S. K.
,
Sharma
,
M. K.
, and
Schechter
,
R. S.
,
1995
, “
Adhesion and Hydrodynamic Removal of Colloidal Particles From Surfaces
,”
Part. Sci. Technol.
,
13
(
3–4
)
pp.
227
247
.10.1080/02726359508906680
31.
Vargas
,
S.
,
2001
, “
Straw and Coal Ash Rheology
,”
Ph.D. thesis
,
Technical University of Denmark
,
Lyngby, Denmark
.
32.
Lloyd
,
W. G.
,
Riley
,
J. T.
,
Risen
,
M. A.
,
Gilleland
,
S. R.
, and
Tibbitts
,
R. L.
,
1990
, “
Estimation of Ash Softening Temperatures Using Cross Terms and Partial Factor Analysis
,”
Energy Fuels
,
4
,
pp.
360
364
.10.1021/ef00022a005
33.
Seggiani
,
M.
,
1999
, “
Empirical Correlations of the Ash Fusion Temperatures and Temperature of Critical Viscosity for Coal and Biomass Ashes
,”
Fuel
,
78
,
pp.
1121
1125
.10.1016/S0016-2361(99)00031-9
34.
Sreedharan
,
S. S.
, and
Tafti
,
D.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
),
pp.
201
211
.10.1016/j.ijheatfluidflow.2010.10.006
35.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model
,”
Fuel
,
77
,
pp.
1777
1782
.10.1016/S0016-2361(98)00077-5
You do not currently have access to this content.