Large eddy simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated. Coherent turbulent structures characteristic of a jet in a cross-flow are analyzed and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported for two film-cooling configurations, where the primary difference is the way the jet inflow boundary conditions are prescribed. In the first configuration, the jet conditions are prescribed using a precursor simulation and in the second the jet is modeled using a plenum/pipe configuration. The latter configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.

References

1.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.10.1017/S0022112084000057
2.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
3.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
, “
Evolution of Jets Emanating From Short Holes Into Crossflow
”.
J. Fluid Mech.
,
503
, pp.
57
91
.10.1017/S0022112003007407
4.
Su
,
L. K.
, and
Mungal
,
M. G.
,
2004
, “
Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets
,”
J. Fluid Mech.
,
513
, pp.
1
45
.10.1017/S0022112004009401
5.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2007
, “
Direct Numerical Simulation of Round Turbulent Jets in Crossflow
,”
J. Fluid Mech.
,
574
, pp.
59
84
.10.1017/S0022112006004034
6.
Yuan
,
L. L.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
,
1999
, “
Large-Eddy Simulations of a Round Jet in Crossflow
,”
J. Fluid Mech.
,
379
, pp.
71
104
.10.1017/S0022112098003346
7.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
, pp.
441
453
.10.1115/1.1860562
8.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
, pp. 031020.10.1115/1.2777194
9.
Dhungel
,
S.
,
Phillips
,
A.
,
Ekkad
,
S. V.
, and
Heidmann
,
J. D.
,
2007
, “
Experimental Investigation of a Novel Anti-Vortex Film Cooling Hole Design
,”
ASME
Turbo Expo 2007: Land, Sea and Air (GT2007), Montreal, Quebec, Canada, May 14–17.
10.
Muldoon
,
F., and Acharya, S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3118
3127
.10.1016/j.ijheatmasstransfer.2009.01.030
11.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007
, “
Effect of Jet Pulsing on Film Cooling—Part I: Effectiveness and Flow-Field Temperature Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
232
246
.10.1115/1.2437231
12.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007
, “
Effect of Jet Pulsing on Film Cooling—Part II: Heat Transfer Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
247
257
.10.1115/1.2437230
13.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,” Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air (GT2008), Berlin, June 9–13,
ASME
Paper No. GT2008-51361, pp. 1161–1174.10.1115/GT2008-51361
14.
Zaman
,
K. B. M. Q.
,
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2010
, “
Experimental Study of an Inclined Jet-In-Cross-Flow Interacting With a Vortex Generator
,”
48th AIAA Aerospace Sciences Meeting
, Orlando, FL, January 4–7, AIAA Paper No. 2010-88.
15.
Na
,
S.
, and
Shih
,
T.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
, pp.
464
471
.10.1115/1.2709965
16.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
112
.10.1115/1.555433
17.
Kohli
,
A.
, and
Thole
,
K. A.
,
1997
, “
A CFD Investigation on the Effects of Entrance Crossflow Directions to Film-Cooling Holes
,”
32nd National Heat Transfer Conference
, Baltimore, MD, August 8–12.
18.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Heat Transfer in Gas Turbine Systems, Annals of the New York Academy of Sciences
,
934
, pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
19.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
, pp.
734
742
.10.1115/1.1625397
20.
Peet
,
Y. V.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,” Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air (GT2008) June 9–13, 2008,
ASME
Paper No. GT2008-50420, pp. 409–418.10.1115/GT2008-50420
21.
Muldoon
,
F.
, and
Acharya
,
S.
,
2006
, “
Analysis of k - ɛ Budgets for Film Cooling Using Direct Numerical Simulation
,”
AIAA J.
,
44
(
12
), pp.
3010
3021
.10.2514/1.20597
22.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
23.
Shinn
,
A. F.
,
2011
, “
Large Eddy Simulations of Turbulent Flows on Graphics Processing Units: Application to Film-Cooling Flows
,”
Ph.D. dissertation
,
University of Illinois
,
Urbana-Champaign, IL
.
24.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
, pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
25.
White
,
F. M.
,
2006
,
Viscous Fluid Flow,
3rd ed. McGraw-Hill, New York.
26.
Howes
,
L.
, and
Thomas
,
D.
,
2008
, “
Efficient Random Number Generation and Application Using CUDA
,”
GPU Gems 3
,
H.
,
Nguyen
, ed.,
Pearson Education
,
New York
,
Chap. 37
.
27.
Blazek
,
J.
,
2005
,
Computational Fluid Dynamics: Principles and Applications
, Vol.
1
, 2nd ed.,
Elsevier
,
New York
.
28.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
, pp.
183
200
.10.1023/A:1009995426001
29.
Harlow
,
F.
, and
Welch
,
J.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
, pp.
2182
2189
.10.1063/1.1761178
30.
van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
, pp.
361
370
.10.1016/0021-9991(74)90019-9
31.
van Leer
,
B.
,
1977
, “
Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection
,”
J. Comput. Phys.
,
23
, pp.
276
299
.10.1016/0021-9991(77)90095-X
32.
Werner
,
H.
, and
Wengle
,
H.
,
1991
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
8th Symposium on Turbulent Shear Flows
, Munich, September 9–11, pp.
155
168
.
33.
Shinn
,
A. F.
,
Goodwin
,
M. A.
, and
Vanka
,
S. P.
,
2009
, “
Immersed Boundary Computations of Shear- and Buoyancy-Driven Flows in Complex Enclosures
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4082
4089
.10.1016/j.ijheatmasstransfer.2009.03.044
34.
Chaudhary
,
R.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2010
, “
Direct Numerical Simulations of Magnetic Field Effects on Turbulent Flow in a Square Duct
,”
Phys. Fluids
,
22
(
7
).10.1063/1.3456724
35.
Shinn
,
A. F.
,
Vanka
,
S. P.
, and
Hwu
,
W. W.
,
2010
, “
Direct Numerical Simulation of Turbulent Flow in a Square Duct Using a Graphics Processing Unit (GPU)
,”
40th AIAA Fluid Dynamics Conference
, Chicago, June 28–July 1, Paper No. AIAA-2010-5029.
36.
Tecplot, Inc.
,
2009
,
Extracting Vortex Cores, Tecplot 360 2009 User’s Manual
,
Tecplot, Inc., Belleveu, WA
.
You do not currently have access to this content.