The turbulent flow field of a film cooling flow is investigated using the particle-image velocimetry technique. Cooling jets are injected from a multirow hole configuration into a turbulent boundary layer flow of a flat plate in the presence of a zero and an adverse pressure gradient. The investigations focus on full-coverage film cooling. Therefore, the film cooling configuration consists of three staggered rows of holes with a lateral spacing of p/D=3 and a streamwise row distance of l/D=6. The inclined cooling holes feature a fan-shaped exit geometry with lateral and streamwise expansions. Jets of air and CO2 are injected separately at different blowing ratios into a boundary layer to examine the effects of the density ratio between coolant and mainstream on the mixing behavior and consequently, the cooling efficiency. For the zero pressure gradient case, the measurement results indicate the different nature of the mixing process between the jets and the crossflow after the first, second, and third row. The mainstream velocity distributions evidence the growth of the boundary layer thickness at increasing row number. The interaction between the undisturbed boundary layer and first two rows leads to maximum values of turbulent kinetic energy. The presence of an adverse pressure gradient in the mainstream clearly intensifies the growth of the boundary layer thickness and increases the velocity fluctuations in the upper mixing zone. The measurements considering an increased density ratio show higher turbulence intensities in the shear zone between the jets and the main flow, leading to a more pronounced mixing in this area. The results of the experimental measurements are used to validate numerical findings from a large-eddy simulation. This comparison shows a very good agreement for mean velocity distributions and velocity fluctuations.

1.
Goldstein
,
R. J.
, 1971, “
Film Cooling
,”
Adv. Heat Transfer
0065-2717,
7
, pp.
321
329
.
2.
Thole
,
K.
,
Gritsch
,
M.
,
Schultz
,
A.
, and
Wittig
,
S.
, 1998, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
327
336
.
3.
Tyagi
,
M.
, and
Acharya
,
S.
, 2003, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
734
742
.
4.
Renze
,
P.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2008, “
Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow, Turbul. Combust.
1386-6184,
80
, pp.
119
132
.
5.
Gartshore
,
I.
,
Salcudean
,
M.
, and
Hassan
,
I.
, 2001, “
Film Cooling Injection Hole Geometry: Hole Shape Comparison for Compound Cooling Orientation
,”
AIAA J.
0001-1452,
39
, pp.
1493
1499
.
6.
Jubran
,
B. A.
, and
Maitch
,
B. Y.
, 1999, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configuration
,”
Heat Mass Transfer
0947-7411,
34
, pp.
495
502
.
7.
Saumweber
,
C.
, and
Schulz
,
A.
, 2004, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream the Second Row of Holes
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
237
246
.
8.
Harrington
,
M. K.
,
McWaters
,
M. A.
, and
Bogard
,
D. G.
, 2001, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
798
805
.
9.
Gustafsson
,
K.
, and
Johansson
,
T. G.
, 2001, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
308
816
.
10.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
, 2007, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
518
526
.
11.
Launder
,
B. E.
, and
York
,
J.
, 1974, “
Discrete-Hole Cooling in the Presence of Free Stream Turbulence and Strong Favourable Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
1403
1409
.
12.
Kruse
,
H.
, 1985, “
Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row
,”
AGARD Conf. Proc.
0549-7191,
390
,
1
13
.
13.
Hay
,
N.
,
Lampard
,
D.
, and
Saluja
,
C. L.
, 1985, “
Effects of Cooling Films on the Heat Transfer Coefficient on a Flat Plate With Zero Mainstream Pressure Gradient
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
99
104
.
14.
Teekaram
,
A. J. H.
,
Fort
,
C. J. P.
, and
Jones
,
T. V.
, 1991, “
Film Cooling in the Presence of Mainstream Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
484
492
.
15.
Maiteh
,
B. Y.
, and
Jubran
,
B. A.
, 2004, “
Effects of Pressure Gradient on Film Cooling Effectiveness From Two Rows of Simple and Compound Angle Hole in Combination
,”
Energy Convers. Manage.
0196-8904,
45
, pp.
1457
1469
.
16.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1995, “
Pressure Gradient Effects on Film Cooling
,” ASME Paper No.95-GT-18.
17.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
, 1991, “
Effect of Acceleration on the Heat Transfer Coefficient on a Film-Cooled Surface
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
464
471
.
18.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Naik
,
S.
, and
Weigand
,
B.
, 2001, “
Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
7
16
.
19.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Dittmar
,
J.
, and
Weigand
,
B.
, 2001, “
An Experimental Investigation of Film Cooling on a Convex Surface Subjected to Favourable Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
939
951
.
20.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, 1997, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,” ASME Paper No. 97-GT-45.
21.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
, 2004, “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
0022-1120,
503
, pp.
57
91
.
22.
Jessen
,
W.
,
Schröder
,
W.
, and
Klaas
,
M.
, 2007, “
Evolution of Jets Effusing From Inclined Holes Into Crossflow
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1312
1326
.
23.
Jovanović
,
M. B.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
, 2006, “
Influence of Hole Imperfection on Jet Cross Flow Interaction
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
42
53
.
24.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling–Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
141
149
.
25.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2008, “
Experimental Validation of Quasisteady Assumption in Modelling of Unsteady Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
130
, p.
011022
.
26.
Renze
,
P.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2009, “
Large-Eddy Simulation of Interaction of Film Cooling Rows
,” ASME Paper No. GT2009-59164.
27.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
28.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II-Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
29.
Adrian
,
R. J.
, 1991, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
261
304
.
30.
Raffel
,
M.
,
Kompenhans
,
J.
, and
Willert
,
C. E.
, 2007,
Particle Image Velocimetry
,
Springer-Verlag
,
New York
.
31.
Renze
,
P.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2007, “
Hole Shape Comparison for Film Cooling Flows Using Large-Eddy Simulations
,” AIAA Paper No. 2007-0927.
32.
Renze
,
P.
,
Jessen
,
W.
, and
Schröder
,
W.
, 2008, “
Numerical and Experimental Analysis of Cylindrical Film Cooling Holes in a Shallow Cavity
,” AIAA Paper No. 2008-0570.
33.
Renze
,
P.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2008, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
18
34
.
34.
Westerweel
,
J.
, and
Scarano
,
F.
, 2005, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
0723-4864,
39
, pp.
1096
1100
.
35.
Westerweel
,
J.
, 1997, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1379
1392
.
36.
Lecordier
,
B.
, and
Trinité
,
M.
, 2006, “
Accuracy Assessment of Image Interpolation Schemes for PIV From Real Images of Particle
,”
The 13th International Symposium on Application of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, p.
1350
.
37.
Große
,
S.
, and
Schröder
,
W.
, 2008, “
Measurement in a Zero-Pressure Gradient Turbulent Boundary Layer With Forced Convection
,”
Flow, Turbul. Combust.
1386-6184,
81
(
1–2
), pp.
131
153
.
38.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
, 2000, “
Film Cooling Effectiveness for Short Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
553
557
.
39.
Guo
,
X.
,
Schröder
,
W.
, and
Meinke
,
M.
, 2006, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
0045-7930,
35
, pp.
587
606
.
40.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2002, “
Recent Progress of MILES for Reynols Number Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
848
861
.
41.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1991, “
Film Cooling Effectiveness Downstream a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
442
449
.
You do not currently have access to this content.