Internal mist/steam blade cooling technology is proposed for advanced gas turbine systems that use the closed-loop steam cooling scheme. Previous experiments on mist/steam heat transfer with a 2D slot jet impingement onto a concave surface showed cooling enhancement of up to 200% at the stagnation point by injecting approximately 0.5% of mist under low temperature and pressure laboratory conditions. Realizing the difficulty in conducting experiments at elevated pressure and temperature working conditions, computational fluid dynamics (CFD) simulation becomes an opted approach to predict the potential applicability of the mist/steam cooling technique at real GT operating conditions. In this study, the CFD model is first validated within 3% and 6% deviations from experimental results for the flows of steam-only and mist/steam flow cases, respectively. The validated CFD model is then used to simulate a row of multiple holes impinging jet onto a concave surface under elevated pressure, temperature, and Reynolds number conditions. The predicted results show an off-center cooling enhancement with a local maximum of 100% at s/d=2 and an average cooling enhancement of about 50%. The mist cooling scheme is predicted to work better on a concave surface than on the flat surface. The extent of wall jet and the size of 3D recirculation zones are identified as a major influencing parameter on the curvature effect on mist cooling performance. The mist enhancement from a slot jet is more pronounced than a row of round jets. The effects of wall heat flux and mist ratio on mist cooling performance are also investigated in this study.

1.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part 1: Experimental System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
360
365
.
2.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part 2: Results and Modeling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
366
374
.
3.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a 180-Degree Tube
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
749
756
.
4.
Li
,
X.
,
Gaddis
,
T.
, and
Wang
,
T.
, 2001, “
Mist/Steam Heat Transfer of Confined Slot Jet Impingement
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
161
167
.
5.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
438
446
.
6.
Li
,
X.
,
Gaddis
,
T.
, and
Wang
,
T.
, 2003, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2279
2290
.
7.
Wang
,
T.
,
Gaddis
,
J. L.
, and
Li
,
X.
, 2005, “
Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5179
5191
.
8.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2001, “
Modeling of Heat Transfer in a Mist/Steam Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1086
1092
.
9.
Chou
,
Y. J.
, and
Hung
,
Y. H.
, 1994, “
Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
479
482
.
10.
Chou
,
Y. J.
, and
Hung
,
Y. H.
, 1994, “
Fluid Flow and Heat Transfer of an Extended Slot Jet Impingement
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
538
545
.
11.
Laschefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
, 1996, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer
0149-5720,
30
, pp.
87
101
.
12.
Cziesla
,
T.
,
Tandogan
,
E.
, and
Mitra
,
N. K.
, 1997, “
Large Eddy Simulation of Heat Transfer From Impinging Slot Jets
,”
Numer. Heat Transfer
0149-5720,
32
, pp.
1
17
.
13.
Yang
,
Y. T.
, and
Shyu
,
C. H.
, 1998, “
Numerical Study of Multiple Impinging Slot Jets With an Inclined Confinement Surface
,”
Numer. Heat Transfer, Part A
1040-7782,
33
, pp.
23
37
.
14.
Tzeng
,
P. Y.
,
Soong
,
C. Y.
, and
Hsieh
,
C. D.
, 1999, “
Numerical Investigation of Heat Transfer Under Confined Impinging Turbulent Slot Jets
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
903
924
.
15.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
, 2007, “
Effect of Hole Spacing on Jet Array Impingement Heat Transfer
,” ASME Paper No. GT2007-28292.
16.
Shimizu
,
A.
,
Echigo
,
R.
, and
Hasegawa
,
S.
, 1979, “
Impinging Jet Heat Transfer With Gas-Solid Suspension Medium
,”
Heat Transfer Conference
, San Diego, CA, pp.
155
160
.
17.
Yoshida
,
H.
,
Suenaga
,
K.
, and
Echigo
,
R.
, 1990, “
Turbulence Structure and Heat Transfer of a Two-Dimensional Impinging Jet With Gas-Solid Suspensions
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
5
), pp.
859
867
.
18.
Li
,
X.
, and
Wang
,
T.
, 2006, “
Simulation of Film Cooling Enhancement With Mist Injection
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
509
519
.
19.
Li
,
X.
, and
Wang
,
T.
, 2007, “
Effects of Various Modellings on Mist Film Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
472
482
.
20.
Li
,
X.
, and
Wang
,
T.
, 2008, “
Two-Phase Flow Simulation of Mist Film Cooling on Turbine Blades With Conjugate Internal Cooling
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
102901
.
21.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
, 2006, “
Numerical Study of the Near-Wall Droplet Jet in a Tube With Heat Flux on the Surface
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
47
, pp.
1
11
.
22.
Li
,
X.
, and
Wang
,
T.
, 2008, “
Computational Analysis of Surface Curvature Effect on Mist Film-Cooling Performance
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
121901
.
23.
Fenot
,
M.
,
Dorignacm
,
E.
, and
Vullierme
,
J. J.
, 2008, “
An Experimental Study on Hot Round Jets Impinging a Concave Surface
,”
Int. J. Heat Fluid Flow
0142-727X,
29
(
4
), pp.
945
956
.
24.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
, 2002, “
Experimental Racetrack Shaped Jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,”
ASME
Paper No. GT-2002-30477.
25.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
, 2010, “
Calibration of a Computational Model to Predict Mist/Steam Impinging Jets Cooling With an Application to Gas Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
132
(
12
), p.
122201
.
26.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
27.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
28.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
.
29.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
, 1980, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
0022-1120,
101
, pp.
737
758
.
30.
Li
,
A.
, and
Ahmadi
,
G.
, 1992, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
0278-6826,
16
, pp.
209
226
.
31.
2006, Fluent Manual, Version 6.3.26, Ansys Inc., Canonsburg, PA.
32.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
141
146
.
33.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
34.
Kuo
,
K. Y.
, 1986,
Principles of Combustion
,
Wiley
,
New York
.
35.
Wachters
,
L. H. J.
, and
Westerling
,
N. A.
, 1966, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
1047
1056
.
36.
Harlow
,
F. H.
, and
Shannon
,
J. P.
, 1967, “
The Splash of a Liquid Drop
,”
J. Appl. Phys.
0021-8979,
38
(
10
), pp.
3855
3866
.
37.
Bai
,
C.
, and
Gosman
,
A. D.
, 1995, “
Development of Methodology for Spray Impingement Simulation
,” SAE Paper No. 950283.
38.
Stow
,
C. D.
, and
Stainer
,
R. D.
, 1977, “
The Physical Products of a Splashing Water Drop
,”
J. Meteorol. Soc. Jpn.
0026-1165,
55
(
5
), pp.
518
531
.
39.
Stanton
,
D. W.
, and
Rutland
,
C. J.
, 1996, “
Modeling Fuel Film Formation and Wall Interaction in Diesel Engines
,” SAE Paper No. 960628.
40.
Rourke
,
P. J. O.
, and
Amsden
,
A. A.
, 2000, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,” SAE Paper No. 2000-01-0271.
41.
Rayleigh
,
J. W. S.
, 1917, “
On the Dynamics of Revolving Fluids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
93
, pp.
148
154
.
You do not currently have access to this content.