A new reduced-order aeroelastic model using the principal shapes (AMPSs) of modes is presented. Rotors with flexible disks and alternate blade mistuning can challenge the fidelity of flutter prediction techniques that assume uniform blade-to-blade geometry and mode shape invariance with nodal diameter pattern. The AMPS method, however, accounts for alternating blade geometry as well as varying blade mode shapes, providing accurate flutter predictions for a large number of modes from a small number of computational fluid dynamics simulations. AMPS calculations on rotors with alternate blade mistuning are presented and compared to other prediction techniques. The results provide insight into how alternate blade mistuning affects aerodynamic coupling and the flutter characteristics of a rotor.

1.
Crawley
,
E.
, and
Hall
,
K.
, 1985, “
Optimization and Mechanisms of Mistuning in Cascades
.”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
418
426
.
2.
Kaza
,
K. R. V.
, and
Kielb
,
R. E.
, 1982, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
0001-1452,
20
(
8
), pp.
1120
1127
.
3.
Campobasso
,
M.
, and
Giles
,
M.
, 2001, “
Analysis of the Effect of Mistuning on Turbomachinery Aeroelasticity
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines
Ferrand
,
P.
, and
Aubert
,
S.
, eds.,
Presses Universitaires de Grenoble
,
Grenoble, France
, pp.
885
896
.
4.
Silkowski
,
P.
,
Rhie
,
C.
,
Copeland
,
G. S.
,
Eley
,
J.
, and
Bleeg
,
J.
, 2002, “
Computational-Fluid-Dynamics Investigation of Aeromechanics
.”
J. Propul. Power
0748-4658,
18
(
4
), pp.
788
796
.
5.
Sanders
,
A. J.
,
Hassan
,
K. K.
, and
Rabe
,
D. C.
, 2003, “
Experimental and Numerical Study of Stall Flutter in a Transonic Flow—Low Aspect Ratio Fan Blisk
,” ASME Paper No. GT2003–38353.
6.
Yang
,
M.-T.
, and
Griffin
,
J. H.
, 1997, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
3
), pp.
647
650
.
7.
Yang
,
M.-T.
, and
Griffin
,
J. H.
, 2001, “
A Reduced Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
4
), pp.
893
900
.
8.
Feiner
,
D.
, and
Griffin
,
J.
, 2002, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
597
605
.
9.
Kielb
,
R.
,
Feiner
,
D.
,
Griffin
,
J.
, and
Miyakozawa
,
T.
, 2004, “
Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling
,” ASME Paper No. GT2004-54315.
10.
Bakhle
,
M.
,
Mahajan
,
A.
,
Keith
,
T.
, and
Stefko
,
G.
, 1991, “
Cascade Flutter Analysis With Transient Response Aerodynamics
.”
Comput. Struct.
0045-7949,
41
(
5
), pp.
1073
1085
.
11.
Sadeghi
,
M.
, and
Liu
,
F.
, 2001, “
Computation of Mistuning Effects on Cascade Flutter
.”
AIAA J.
0001-1452,
39
(
1
), pp.
22
28
.
12.
Shapiro
,
B.
, 1998, “
A Symmetry Approach to Extension of Flutter Boundaries via Mistuning
.”
J. Propul. Power
0748-4658,
14
(
3
), pp.
354
366
.
13.
Imregun
,
M.
, and
Ewins
,
D.
, 1984, “
Aeroelastic Vibration Analysis of Tuned and Mistuned Blade Systems
,”
Unsteady Aerodynamics of Turbomachines and Propellers Symposium Proceedings
,
Cambridge University Press
,
Cambridge, UK
, pp.
149
161
.
14.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J.
, 2006, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,” ASME Paper No. GT2006–90407.
15.
Kielb
,
R.
, and
Kaza
,
K.
, 1984, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
.”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
17
24
.
You do not currently have access to this content.