This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-12-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δhu2=2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-12-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the interaction of the rotor and the downstream stator has an influence on the development of the tip leakage vortex of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry and flow field data of the one-and-12-stage turbine will be available to the turbomachinery community for validation and improvement of numerical tools.

1.
Booth
,
T. C.
, 1982, “
Rotor-Tip Leakage Part I—Basic Methodology
,”
J. Eng. Power
0022-0825,
104
, pp.
154
161
.
2.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
3.
Booth
,
T. C.
, 1985, “
Importance of Tip Leakage Flows in Turbine Design
,”
VKI Lecture Series 1985-05
, “
Tip Clearance Effects in Axial Turbomachines
,” 1985.
4.
Bindon
,
J. P.
, and
Morphis
,
G.
, 1990, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,” ASME Paper No. 90-GT-152, June.
5.
Kaiser
,
I.
, and
Bindon
,
J. P.
, 1997, “
The Effect of Tip Clearance on the Development of Loss Behind a Rotor and a Subsequent Nozzle
,” ASME Paper No. 97-GT-53.
6.
Yoshino
,
S.
, 2002, “
Heat Transfer in Rotating Turbine Experiments
,” Ph.D. thesis, Oxford University, Oxford, UK.
7.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
, 2003, “
Tip Leakage Flows in Near Partial Squealer Rims in an Axial Flow Turbine Stage
,” ASME Paper No. GT2003-38979.
8.
Chander
,
P.
,
Lee
,
C.-P.
,
Cherry
,
D.
,
Wadia
,
A.
, and
Doughty
,
R.
, 2005, “
Analysis of Some Improved Blade Tip Concepts
,” ASME Paper No. GT2005-68333.
9.
De Cecco
,
S.
,
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1995, “
Measurement of Tip Leakage Flows in Turbine Cascade with Large Clearances
,” ASME Paper No. 95-GT-77.
10.
Yamamoto
,
A.
,
Tominaga
,
J.
,
Matsunuma
,
T.
, and
Outa
,
E.
, 1994, “
Detailed Measurements of Three-Dimensional Flows and Losses Inside an Axial Flow Turbine Rotor
,” ASME Paper No. 94-GT-348.
11.
Staubach
,
J. B.
,
Sharma
,
O. P.
, and
Stetson
,
G. M.
, 1996, “
Reduction of Tip Clearance Losses Through 3-D Airfoil Designs
,” ASME Paper No. 96-TA-13.
12.
Offenburg
,
L. S.
,
Fischer
,
J. D.
, and
Hoek
,
T. J. V.
, 1987, “
An Experimental Investigation of Turbine Case Treatments
,” AIAA-87-1919.
13.
Harvey
,
N. W.
, 2004, “
Aerothermal Implications of Shroudless and Shrouded Blades
,”
VKI Lectures Series 2004-02
, “
Turbine Blade Tip Design and Tip Clearance Treatment
.”
14.
Dey
,
D.
, and
Camci
,
C.
, 2000, “
Development of Tip Clearance Flow Downstream of a Rotor Blade With Coolant Injection From a Tip Trench
,”
Proceedings of the 8th ISROMAC Conference
,
Honolulu, Hawaii
, pp.
572
579
.
15.
Rao
,
N. M.
, and
Camci
,
C.
, 2004, “
Axial Turbine Tip Desensitization by Injection from a Tip Trench, Part 1: Effect of Injection Mass Flow Rate
,” ASME Paper No. GT2004-53256.
16.
Rao
,
N. M.
, and
Camci
,
C.
, 2004, “
Axial Turbine Tip Desensitization by Injection from a Tip Trench, Part 2: Leakage Flow Sensitivity to Injection Location
,” ASME Paper No. GT2004-53258.
17.
Schlienger
,
J.
, 2003, “
Evolution of Unsteady Flows in a Multistage Shrouded Axial Turbine
,” Ph.D. dissertation No. 15230, ETH, Zurich, Switzerland.
18.
Pfau
,
A.
, 2003, “
Loss Mechanisms in Labyrinth Seals of Shrouded Axial Turbines
,” Ph.D. dissertation No. 15226, ETH, Zurich, Switzerland.
19.
Porreca
,
L.
,
Behr
,
T.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2005, “
Fluid Dynamics and Performance of Partially and Fully Shrouded Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
668
678
.
20.
Behr
,
T.
,
Porreca
,
L.
,
Mokulys
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2006, “
Multistage Aspects and Unsteady Flow Effects of Stator and Rotor Clocking in an Axial Turbine with Low Aspect Ratio Blading
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
11
22
.
21.
Sell
,
M.
,
Schlienger
,
J.
,
Pfau
,
A.
,
Treiber
,
M.
, and
Abhari
,
R. S.
, 2001, “
The 2-Stage Axial Turbine Test Facility LISA
,” ASME Paper No. 2001-GT-0492.
22.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2006, “
Geometry Data of Unshrouded 1.5-Stage Turbine Profiles
,” http://www.lsm.ethz.chhttp://www.lsm.ethz.ch
23.
Pritchard
,
L. J.
, 1985, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,” ASME Paper No. 85-GT-219.
24.
Troxler
,
A.
, 2002, “
Inverse Design of Gas Turbine Components
,”
Proceedings 4th International Conference on Inverse Problems in Engineering
,
Rio de Janeiro, Brazil
.
25.
Dawes
,
W. N.
, 1988, “
Development of a 3-D Navier-Stokes Solver for Application to All Types of Turbomachinery
,” ASME Paper No. 88-GT-70.
26.
Jameson
,
A.
, and
Baker
,
T. J.
, 1984, “
Multigrid Solutions of the Euler Equations for Aircraft Configurations
,” AIAA Paper No. 84-0093.
27.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Report No. 92–0439.
28.
Mokulys
,
T.
,
Dewhurst
,
S.
, and
Abhari
,
R. S.
, 2005, “
Numerical Validation of Characteristics and Linearized Unsteady Boundary Conditions for Non-Integer Blade Ratios in a Non-Linear Navier–Stokes Solver
,” ASME Paper No. GT2005-68670.
29.
Kupferschmied
,
P.
,
Köppel
,
O.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
, 2000, “
Time Resolved Flow Measurements With Fast Aerodynamic Probes in Turbomachinery
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1036
1054
.
30.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2002, “
Virtual Four Sensor Fast Response Aerodynamic Probe (FRAP)
,”
Proceedings of the 16th Bi-Annual Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines
,
Cambridge, UK
, Sept. 23–24.
31.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
0748-4658,
23
, pp.
227
234
.
32.
Smith
,
S. F.
, 1963, “
A Simple Correlation of Turbine Efficiency
,“
J. R. Aeronaut. Soc.
0368-3931,
69
, pp.
467
470
.
33.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Hodson
,
H. P.
,
Ohyama
,
H.
, and
Watanabe
,
E.
, 2003, “
Blade Row Interaction in a High-Pressure Steam Turbine
,“
ASME J. Turbomach.
0889-504X,
125
, pp.
14
24
.
You do not currently have access to this content.