The primary focus of this paper is convective heat transfer in axial flow turbines. Research activity involving heat transfer generally separates into two related areas: predictions and measurements. The problems associated with predicting heat transfer are coupled with turbine aerodynamics because proper prediction of vane and blade surface-pressure distribution is essential for predicting the corresponding heat transfer distribution. The experimental community has advanced to the point where time-averaged and time-resolved three-dimensional heat transfer data for the vanes and blades are obtained routinely by those operating full-stage rotating turbines. However, there are relatively few CFD codes capable of generating three-dimensional predictions of the heat transfer distribution, and where these codes have been applied the results suggest that additional work is required. This paper outlines the progression of work done by the heat transfer community over the last several decades as both the measurements and the predictions have improved to current levels. To frame the problem properly, the paper reviews the influence of turbine aerodynamics on heat transfer predictions. This includes a discussion of time-resolved surface-pressure measurements with predictions and the data involved in forcing function measurements. The ability of existing two-dimensional and three-dimensional Navier–Stokes codes to predict the proper trends of the time-averaged and unsteady pressure field for full-stage rotating turbines is demonstrated. Most of the codes do a reasonably good job of predicting the surface-pressure data at vane and blade midspan, but not as well near the hub or the tip region for the blade. In addition, the ability of the codes to predict surface-pressure distribution is significantly better than the corresponding heat transfer distributions. Heat transfer codes are validated against measurements of one type or another. Sometimes the measurements are performed using full rotating rigs, and other times a much simpler geometry is used. In either case, it is important to review the measurement techniques currently used. Heat transfer predictions for engine turbines are very difficult because the boundary conditions are not well known. The conditions at the exit of the combustor are generally not well known and a section of this paper discusses that problem. The majority of the discussion is devoted to external heat transfer with and without cooling, turbulence effects, and internal cooling. As the design community increases the thrust-to-weight ratio and the turbine inlet temperature, there remain many turbine-related heat transfer issues. Included are film cooling modeling, definition of combustor exit conditions, understanding of blade tip distress, definition of hot streak migration, component fatigue, loss mechanisms in the low turbine, and many others. Several suggestions are given herein for research and development areas for which there is potentially high payoff to the industry with relatively small risk.

1.
Clark, J. P., Stetson, G. M., Magge, S. S., Ni, R. H., Haldeman, C. W., and Dunn, M. G., 2000, “The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and 1/2 Stage Transonic Turbine and a Comparison With Experimental Results,” ASME Paper No. 2000-GT-0446.
2.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
, pp.
123
133
.
3.
Simoneau
,
R. J.
, and
Simon
,
F. F.
,
1993
, “
Progress Towards Understanding and Predicting Heat Transfer in the Turbine Gas Path
,”
Int. J. Heat Fluid Flow
,
14
, No.
2
, pp.
106
127
.
4.
Denton, J. D., and Singh, U. K., 1979, “Time Marching Methods for Turbomachinery Flow Calculations. Part I—Basic Principles and 20 Applications and 11 Three Dimensional Flows,” Application of Numerical Methods to Flow Calculations in Turbomachinery, VKI Lecture Series 1979-7.
5.
Denton, J. D., 1982, “An Improved Time Marching Method for Turbomachinery Flow Calculations,” ASME Paper No. 82-GT-239.
6.
Rai
,
M. M.
,
1987
, “
Navier–Stokes Simulations of Rotor–Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
,
3
, No.
5
, pp.
387
396
.
7.
Rai, M. M., 1987, “Unsteady Three-Dimensional Navier-Stokes Simulations of Turbine Rotor–Stator Interaction,” AIAA Paper No. 87–2058.
8.
Giles, M. B., 1988, “UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery,” MIT Gas Turbine Laboratory Report No. 195.
9.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake Rotor Interaction
,”
J. Propul. Power
,
4
, No.
4
, pp.
356
362
.
10.
Sharma, O. P., Renaud, T. L., Butler, T. L., and Milsaps, K., 1988, “Rotor–Stator Interaction in Multi-Stage Axial-Flow Turbines,” AIAA Paper No. 88-3013.
11.
Whitfield, D. L., Janus, J. M., and Simpson, L. B., 1988, “Implicit Finite Volume High Resolution Wave—Split Scheme for Solving the Unsteady Three-Dimensional Euler and Navier–Stokes Equations on Stationary or Dynamic Grids,” MSSU-EIRS-ASE-88-2.
12.
Ni, R. H., and Bogoian, J. C., 1989, “Prediction of Three-Dimensional Multistage Turbine Flow Field Using a Multiple-Grid Euler Solver,” AIAA Paper No. 89-0203.
13.
Rao, K. V., and Delaney, R. A., 1990, “Investigation of Unsteady Flow Through a Transonic Turbine Stage: Part I—Analysis,” AIAA Paper No. 90–2408.
14.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
,
1992
, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
,
114
, pp.
79
90
.
15.
Giles, M. B., and Haimes, R., 1991, “Validation of a Numerical Method for Unsteady Flow Calculations,” ASME Paper No. 91-GT-271.
16.
Chen, J. P., Celestina, M. L., and Adamczyk, J. J., 1994, “A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages,” ASME Paper No. 94-GT-151.
17.
Rangwalla, A. A., 1994, “Unsteady Navier-Stokes Computations for Advanced Transonic Turbine Design,” AIAA Paper No. 94-2835.
18.
Merz, R., Kruckels, J., Mayer, J. F., and Stetter, H., 1995, “Computation of Three-Dimensional Viscous Transonic Turbine Stage Flow Including Tip Clearance Effects,” ASME Paper No. 95-GT-76.
19.
Davis, R. L., Shang, T., Buteau, J., and Ni, R. H., 1996, “Prediction of Three-Dimensional Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach,” AIAA Paper No. 96-2565.
20.
Arnone, A., and Pacciani, R., 1996, “Numerical Investigation on Wake Shedding in a Turbine Rotor Blade,” Proc. 15th International Conference on Numerical Methods in Fluid Dynamics,, Monterey, CA, June 24–28.
21.
Holmes, D. G., Mitchell, B. E., and Lorence, C. B., 1997, “Three Dimensional Linearized Navier-Stokes Calculations for Flutter and Forced Response,” Proc. 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, pp. 211–224.
22.
von Hoyningen-Huene
,
M.
, and
Jung
,
A. R.
,
2000
, “
Comparison of Different Acceleration Techniques and Methods for Periodic Boundary Treatment in Unsteady Turbine Stage Flow Simulations
,”
ASME J. Turbomach.
,
122
, pp.
234
246
.
23.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
, No.
2
, pp.
189
217
.
24.
Dring
,
R. P.
, and
Joslyn
,
H. D.
,
1981
, “
Measurement of Turbine Rotor Blade Flows
,”
ASME J. Eng. Power
,
103
, pp.
400
405
.
25.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. J.
,
1982
, “
Turbine Rotor–Stator Interaction
,”
ASME J. Eng. Power
,
104
, pp.
729
742
.
26.
Blair, M. F., Dring, R. P., and Joslyn, H. D., 1988, “The Effects of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer Part I: Design Operating Conditions,” ASME Paper No. 88-GT-125.
27.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
,
116
, pp.
14
22
.
28.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane–Blade Interaction in a Transonic Turbine, Part I—Aerodynamics
,”
J. Propul. Power
,
10
, No.
3
, pp.
305
311
.
29.
Moss, R. W., Ainsworth, R. W., Sheldrake, C. D., and Miller, R., 1997, “The Unsteady Pressure Field Over a Turbine Blade Surface: Visualization and Interpretation of Experimental Data,” ASME Paper No. 97-GT-474.
30.
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Abhari
,
R. S.
,
Venable
,
B. L.
, and
Delaney
,
R. A.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics. Part II: Time Resolved Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
673
682
.
31.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
, and
Abhari
,
R. S.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics, Part I: Time-Averaged Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
663
672
.
32.
Barter, J. W., Vitt, P. H., and Chen, J. P., 2000, “Interaction Effects in a Transonic Stage,” ASME Paper No. 2000-GT-0376.
33.
Denos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
, pp.
81
89
.
34.
Haldeman, C. W., Dunn, M. G., Abhari, R. S., Johnson, P. D., and Montesdeoca, X. A., 2000, “Experimental and Computational Investigation of the Time-Averaged and Time-Resolved Pressure Loading on a Vaneless CounterRotating Turbine,” ASME Paper No. 2000-GT-445.
35.
Laumert, B., Martensson, H., and Fransson, T., 2000, “Investigation of the Flowfield in the Transonic VKI BRITE EURAM Turbine Stage With 3D Steady and Unsteady N–S Computations,” ASME Paper No. 2000-GT-433.
36.
Weaver, M. M., Manwaring, S. R., Abhari, R. S., Dunn, M. G., Salay, M. J., Frey, K. K., and Heidegger, N., 2000, “Forcing Function Measurements and Predictions of a Transonic Vaneless Counterrotating Turbine,” ASME Paper No. 2000-GT-375.
37.
Kielb, J. J., Abhari, R. S., and Dunn, M. G., 2001, “Experimental and Numerical Study of Forced Response in a Full-Scale Rotating Turbine,” ASME Paper No. 2001-GT-263.
38.
Ni, R. H., and Sharma, O. P., 1990, “Using Three-Dimensional Euler Flow Simulations to Assess Effects of Periodic Unsteady Flow Through Turbines,” AIAA Paper No. 90–2357.
39.
Takahashi, R., and Ni, R. H., 1991, “Unsteady Hot Streak Simulation Through 1-1/2 Stage Turbine,” AIAA Paper No. 91-3382.
40.
Lewis
,
J. P.
,
Delaney
,
R. A.
, and
Hall
,
E. J.
,
1989
, “
Numerical Prediction of Turbine Vane–Blade Aerodynamic Interaction
,”
ASME J. Turbomach.
,
111
, pp.
387
393
.
41.
Dorney
,
D. J.
, and
Davis
,
R. L.
,
1992
, “
Navier-Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
,
114
, pp.
795
806
.
42.
Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper No. 78-257.
43.
Turner, M. G., Vitt, P. H., Topp, D. A., Saeidi, S., Hunter, S. D., Dailey, L. D., and Beach, T. A., 1999, “Multistage Simulations of the GE90 Turbine,” ASME Paper No. 99-GT-98.
44.
Chen, J. P., and Barter, J. W., 1998, “Comparison of Time-Accurate Calculations for the Unsteady Interaction in a Turbomachinery Stage,” AIAA Paper No. 98-3292.
45.
Dunn
,
M. G.
,
Bennett
,
W. A.
,
Delaney
,
R. A.
, and
Rao
,
K. V.
,
1992
, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
,
114
, pp.
91
99
.
46.
Ni, R. H., Sharma, O. P., Takahashi, R. K., and Bogoian, J. C., 1989, “Prediction of 3D Multi-Stage Turbine Flow Field Using a Multiple-Grid Euler Solver,” AIAA Paper No. 89-0203.
47.
Sharma, O. P., and Syed, S. A., 1991, “Turbulence Modeling in Gas Turbine Design and Analysis,” AIAA Paper 91-0514.
48.
Sharma, O. P., Ni, R. H., and Tanrikut, S., 1994, “Unsteady Flows in Turbines and Impact on Design Procedures,” AGARD Lecture Series #195, Turbomachinery Design Using CFD.
49.
Chiang
,
H.
, and
Kielb
,
R.
,
1993
, “
An Analysis System for Blade Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
762
770
.
50.
Kielb, R. E., 1999, “Aeroelasticity in Axial Flow Turbomachines,” von Karman Institute for Fluid Dynamics, Lecture Series Program 1998–1999, May 3–7.
51.
Manwaring
,
S. R.
, and
Wisler
,
D. C.
,
1993
, “
Unsteady Aerodynamics and Gust Response in Compressors and Turbines
,”
ASME J. Turbomach.
,
115
, pp.
725
740
.
52.
Weaver, M. M., and Fleeter, S., 1994, “Turbine Rotor Generated Forcing Functions for Flow Induced Vibrations,” ASME Paper No. 94-GT-328.
53.
Verdon
,
J. M.
, and
Casper
,
J. R.
,
1982
, “
Development of a Linear Unsteady Aerodynamic Analysis for Finite Deflection Subsonic Cascades
,”
AIAA J.
,
20
, No.
9
, pp.
1259
1267
.
54.
Whitehead, D. S., 1982, “The Calculations of Steady and Unsteady Transonic Flow in Cascades,” Cambridge University Engineering Dept., Report CUED/A-Turbo/TR 118.
55.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
, pp.
714
722
.
56.
Verdon, J. M., Montgomery, M. D., and Kousen, K. A., 1995, “Development of a Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows,” NASA CR 4677.
57.
Abhari
,
R. S.
, and
Giles
,
M. B.
,
1997
, “
A Navier-Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping
,”
ASME J. Turbomach.
,
119
, pp.
77
81
.
58.
Crawley, E. F., 1981, “Measurement of Aerodynamic Damping in the MIT Transonic Rotor,” MIT Gas Turbine Laboratory Report No. 157.
59.
Crawley
,
E. F.
, and
deLuis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
, No.
10
, pp.
1373
1385
.
60.
Bailey
,
T.
, and
Hubbard
,
J. E.
,
1985
, “
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid. Control
,
8
, No.
5
, pp.
605
611
.
61.
Cross, C. J., and Fleeter, S., 1999, “Shunted Piezoelectric Control of Airfoil Vibrations,” ASME Paper No. 99-GT-385.
62.
Abhari, R. S., 1998, “A Novel Technique for the Measurement of Aerodynamic and Structural Damping of a Rotating Turbine Blade,” presented at the 3rd National Conference on High Cycle Fatigue, San Antonio, TX.
63.
Jeffers, T. R., Kielb, J. J., and Abhari, R. S., 2000, “A Novel Technique for Measurement of Rotating Blade Damping,” ASME Paper No. 2000-GT-359.
64.
Kielb, J. J., 1999, “Experimental and Numerical Study of Blade Forced Response in a Full-Scale Rotating Turbine at Actual Engine Conditions,” MS Thesis, Ohio State University, OSU GTL Doc. #1999_8_M6.
65.
Kielb, J. J., and Abhari, R. S., 2001, “Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine,” ASME Paper No. 2001-GT-262.
66.
Giel, P. W., VanFossen, G. J., Boyle, R. J., Thurman, D. R., and Civinskas, K. C., 1999, “Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade,” ASME Paper No. 99-GT-125.
67.
Jones, T. V., and Schultz, D. L., 1970, “A Study of Film Cooling Related to Gas Turbines Using Transient Techniques,” University of Oxford Report No. 1121/70.
68.
Jones, T. V., and Hippensteele, S. A., 1988, “High-Resolution Heat Transfer-Coefficient Maps Applicable to Compound-Curve Surfaces Using Liquid Crystals in a Transient Wind Tunnel,” NASA TM 89855.
69.
Wang, Z., Ireland, P. T., and Jones, T. V., 1993, “An Advanced Method of Processing Liquid Crystal Video Signals From Transient Heat Transfer Experiments,” ASME Paper No. 93-GT-282.
70.
Rabinowicz
,
J.
,
Jessey
,
M. E.
, and
Bartsch
,
C. A.
,
1955
, “
Resistance Thermometer for Transient High Temperature Studies
,”
J. Appl. Phys.
,
23
, p.
97
97
.
71.
Chabai
,
A. J.
, and
Emrich
,
R. J.
,
1955
, “
Measurement of Wall Temperature and Heat Flow in a Shock Tube
,”
J. Appl. Phys.
,
26
, pp.
779
780
.
72.
Vidal, R. J., 1956, “Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel,” Cornell Aeronautical Laboratory Report AD-917-A-1.
73.
Vidal, R. J., 1962, “Transient Surface Temperature Measurements,” Cornell Aeronautical Laboratory Report No. 114.
74.
Squire, W., 1953, “Thermocouple With Insulated Backing,” Cornell Aeronautical Laboratory Inter-Office Memorandum, Nov. 3.
75.
Rose, P. H., and Stark, W. I., 1956, “Stagnation Point Heat Transfer Measurements in Air at High Temperature,” AVCO Research Laboratory, Research Note No. 24.
76.
Schultz, D. L., and Jones, T. V., 1973, “Heat Transfer Measurements in Short-Duration Hypersonic Facilities,” AGARD-AG-165.
77.
Jones, T. V., Schultz, D. L., and Hendley, A., 1973, “On the Flow in an Isentropic Light Piston Tunnel,” ARC R&M 3731.
78.
Epstein, A. H., Guenette, G. R., and Norton, R. J. G., 1984, “The MIT Blowdown Turbine Facility,” ASME Paper No. 84-GT-116.
79.
Doorly, J. E. and Oldfield, M. L. G., 1986, “New Heat Transfer Gages for Use on Multilayered Substrates,” ASME Paper No. 86-GT-96.
80.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gages,” Int. J. Heat Mass Transf., pp. 1159–1168.
81.
Doorly, J. E., 1987, “Procedures for Determining Surface Heat Flux Using Thin Film Gages on a Coated Metal Model in a Transient Test Facility,” ASME Paper No. 87-GT-85.
82.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
,
1986
, “
High-Frequency Response Heat-Flux Gage
,”
Rev. Sci. Instrum.
,
57
, No.
4
, pp.
639
649
(see also AGARD-CPP-390, Bergen, Norway, May 1985).
83.
Hager
,
J. M.
,
Simmons
,
S.
,
Smith
,
D.
,
Onishi
,
S.
,
Langley
,
L. W.
, and
Diller
,
T. E.
,
1991
, “
Experimental Performance of a Heat Flux Microsensor
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
246
250
.
84.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
1995
, “
High-Frequency Heat Flux Sensor Calibration and Modeling
,”
ASME J. Fluids Eng.
,
117
, pp.
659
664
.
85.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H. C., Diller, T. E., Schetz, J. A., and Ng, W., 1999, “Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade,” ASME Paper No. 99-GT-259.
86.
Smith, D. E., Bubb, J. V., Popp, O., Grabowski, H., Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer,” ASME Paper No. 2000-GT-202.
87.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H., Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Unsteady Heat Transfer,” ASME Paper No. 2000-GT-203.
88.
Weaver, M. M., Moselle, J. R., Dunn, M. G., and Guenette, J. G., 1994, “Reduction of Data From Heat-Flux Gages—A Documentation of the MIT ACQ Code and an Adaptation to Single-Sided Gages,” Calspan Technical Report No. 7733-4.
89.
Goebel, S. G., Abuaf, N., Lovett, J. A., and Lee, C-P., 1993, “Measurement of Combustor Velocity and Turbulence Profiles,” ASME Paper No. 93-GT-228.
90.
Moss, R. W., and Oldfield, M. L. G., 1991, “Measurement of Hot Combustor Turbulence Spectra,” ASME Paper No. 91-GT-351.
91.
Mularz, E. J., and Schultz, D. F., 1974, “Measurement of Liner Cooling Effectiveness Within a Full-Scale Double-Annular Ram-Induction Combustor,” NASA TN D-7689.
92.
Marek, C. J., and Tacina, R. R., 1975, “Effect of Free-Stream Turbulence on Film Cooling,” NASA TN D-7958.
93.
Juhasz, A. J., and Marek, C. J., 1971, “Combustor Liner Film Cooling in the Presence of High Free-Stream Turbulence,” NASA TN D-6360.
94.
Kumar, G. N., Rettig, M. G., Mongia, H. C., and Chauvette, C. H., 1998, “Automated Cooling Design Procedure for Combustor Walls,” AIAA Paper No. 98–0836.
95.
Kumar, G. N., Moder, J. P., Mongia, H. C., and Prakash, C., 1998, “Development of a Three Dimensional Radiative Heat Transfer Computational Methodology for Aircraft Engine Combustors,” AIAA Paper No. 98–0855.
96.
Kumar, G. N., and Mongia, H. C., 2000, “Validation of Near Wall Turbulence Models for Film Cooling Applications in Combustors,” AIAA Paper No. 2000–0480.
97.
Kumar, G. N., Duncan, B. S., and Mongia, H. C., 2000, “Assessment of Advanced Turbulence Models and Unstructured Code for Calculating the Film Effectiveness of a Modern Film Cooled Combustor,” AIAA Paper No. 2000–0333.
98.
Mayle
,
R. E.
,
Dullenkopf
,
K.
, and
Schultz
,
A.
,
1998
, “
The Turbulence That Matters
,”
ASME J. Turbomach.
,
120
, pp.
402
409
.
99.
Katsanis, T., and McNally, W. D., 1977, “Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct,” 1, User’s Manual, Vol. II, Programmers Manual, NASA TN D-8430, 8431.
100.
Katsanis, T., 1969, “FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine,” NASA TN D-5427.
101.
Eckert, E. R. G., and Drake, R. M., 1959, Heat and Mass Transfer, 2nd ed., McGraw-Hill, New York.
102.
Crawford, M. E., and Kays, W. M., 1976, “STAN5—A Program for Numerical Computation of Two-Dimensional Internal and External Boundary Layer Flows,” NASA CR-2742.
103.
Patankar, S.-V., and Spalding, D.-B., 1970, Heat and Mass Transfer in Boundary Layers ed., International Textbook Co., London.
104.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analysis of Heat Flux in a Turbine Stage: Part II—Discussion of Results and Comparison With Prediction
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
234
240
.
105.
Dunn
,
M. G.
, and
Chupp
,
R. E.
,
1988
, “
Time-Averaged Heat-Flux Distributions and Comparison With Prediction for the Teledyne 702 HP Turbine Stage
,”
ASME J. Turbomach.
,
110
, pp.
51
56
.
106.
Graham, R. W., 1979, “Fundamental Mechanics That Influence the Estimate of Heat Transfer to Gas Turbine Blades,” ASME Paper No. 79-HT-43.
107.
Dunn
,
M. G.
,
Martin
,
H. L.
, and
Stanek
,
M. J.
,
1986
, “
Heat Flux and Pressure Measurements and Comparison With Prediction for a Low Aspect Ratio Turbine Stage
,”
ASME J. Turbomach.
,
108
, pp.
108
115
.
108.
Wood, J. R., 1981, “Improved Methods for Calculating Transonic Velocities on Blade-to-Blade Stream Surfaces of a Turbomachine,” NASA TP-1772.
109.
Boyle, R. J., Haas, J. E., and Katsanis, T., 1984, “Comparison Between Measured Turbine Stage Performance and the Predicted Performance Using Quasi-3D Flow and Boundary Layer Analysis,” NASA TM-83640.
110.
Zerkle, R. D., and Lounsbury, R. J., 1987, “The Influence of Freestream Turbulence and Pressure Gradient on Heat Transfer to Gas Turbine Airfoils,” AIAA Paper No. 87-1917.
111.
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Calculation of Heat Transfer to Convection-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
621
627
.
112.
Lam
,
C. K. S.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k–ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
, pp.
456
460
.
113.
Gaugler, R. E., 1981, “Some Modifications to, and Operation Experience With, the Two Dimensional, Finite-Difference, Boundary Layer Code, STAN 5,” ASME Paper No. 81-GT-89.
114.
Goldman, L. J., and Gaugler, R. E., 1980, “Prediction Method for Two-Dimensional Aerodynamic Losses of Cooled Vanes Using Integral Boundary-Layer Parameters,” NASA TP-1623.
115.
Crawford, M. E., Kays, W. M., and Moffat, R. J., 1980, “Full Coverage Film Cooling on Flat, Isothermal Surfaces: A Summary Report on Data and Predictions,” NASA CR-3219 (see also ASME J. Eng. Power, 102, pp. 1006–1012).
116.
Crawford, M. E., Moffat, R. J., and Kays, W. M., 1980, “Full-Coverage Film Cooling—Part I: Comparison of Heat Transfer Data for Three Injection Angles,” ASME Paper No. 80-GT-37 and “Part II: Heat Transfer Data and Numerical Simulation,” ASME Paper No. 80-GT-43.
117.
Schmidt
,
R. C.
, and
Patankar
,
S. V.
,
1991
, “
Simulating Boundary Layer Transition With Low Reynolds Number k–ε Models: Part 2: An Approach to Improving Predictions
,”
ASME J. Turbomach.
,
113
, pp.
13
26
.
118.
Harasgama, S. P., Tarada, F. H., Baumann, R., Crawford, M. E., and Neelakantan, S., 1993, “Calculation of Heat Transfer to Turbine Blading Using Two-Dimensional Boundary Layer Methods,” ASME Paper No. 93-GT-79.
119.
Arts, T., Lambert de Rouvroit, M., and Rutherford, A. W., 1990, “Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” VKI Technical Note 174.
120.
Sharma, O. P., Nguyen, P., Ni, R. H., Rhie, C. M., White, J. A., and Finke, A. K., 1987, “Aerodynamics and Heat Transfer Analysis of a Low Aspect Ratio Turbine,” AIAA Paper No. 87–1916.
121.
Ni
,
R. H.
,
1982
, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
, No.
11
, pp.
1565
1571
.
122.
Rhie, C. M., 1986, “A Pressure Based Navier–Stokes Solver With the Multigrid Method,” AIAA Paper No. 86–207.
123.
Vatsa, V. N., 1985, “A Three-Dimensional Boundary Layer Analysis Including Heat Transfer and Blade Rotation Effects,” presented at the 3rd Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA.
124.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
125.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
,
1990
, “
A Theory of Wake-Induced Transition
,”
ASME J. Turbomach.
,
112
, pp.
188
195
.
126.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
,
1991
, “
More on the Turbulent-Strip Theory for Wake-Induced Transition
,”
ASME J. Turbomach.
,
113
, pp.
428
432
.
127.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joslyn
,
H. D.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
,
102
, pp.
81
87
.
128.
Dunn, M. G., 1984, “Time-Resolved Heat-Flux Measurements for a Full-Stage Turbine,” AFWAL-TR-84-2025.
129.
Dunn
,
M. G.
,
George
,
W. K.
,
Rae
,
W. J.
,
Woodward
,
S. H.
,
Moller
,
J. C.
, and
Seymour
,
P. J.
,
1986
, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part II—Description of Analysis Technique and Typical Time-Resolved Measurements
,”
ASME J. Turbomach.
,
108
, pp.
98
107
.
130.
Guenette, G. R., Epstein, A. H., Giles, M. B., Haimes, R., and Norton, R. J. G., 1988, “Fully Scaled Transonic Turbine Rotor heat Transfer Measurements,” ASME Paper No. 88-GT-171.
131.
Dunn
,
M. G.
,
Seymour
,
P. J.
,
Woodward
,
S. H.
,
George
,
W. K.
, and
Chupp
,
R. E.
,
1989
, “
Phase-Resolved Heat-Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME J. Turbomach.
,
111
, pp.
8
19
.
132.
Kingcombe, R. C., Harasgama, S. P., Leversuch, N. P., and Wedlake, E. T., 1989, “Aerodynamic and Heat Transfer Measurements on Blading for a High Rim-Speed Transonic Turbine,” ASME Paper No. 89-GT-228.
133.
Dunn
,
M. G.
,
1990
, “
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
,”
ASME J. Turbomach.
,
112
, pp.
531
538
.
134.
Abhari, R. S., Guenette, G. R., Epstein, A. H., and Giles, M. B., 1991, “Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations,” ASME Paper No. 91-GT-268.
135.
Hodson, H. P., 1983, “Boundary Layer and Loss Measurements on the Rotor of an Axial-Flow Turbine,” ASME Paper No. 83-GT-4.
136.
Hodson, H. P., 1984, “Measurement of Wake Generated Unsteadiness in the Rotor Passages of Axial Flow Turbine,” ASME Paper No. 84-GT-189.
137.
Hodson, H. P., 1984, “Boundary-Layer Transition and Separation Near the Leading Edge of a High-Speed Turbine Blade,” ASME Paper No. 84-GT-179.
138.
Binder, A., Forster, W., Kruse, H. and Rogge, H., 1984, “An Experimental Investigation Into the Effect of Wakes on the Unsteady Turbine Rotor Flow,” ASME Paper No. 84-GT-178.
139.
Doorly, D. J., Oldfield, M. L. G., and Scrivener, C. T. J., 1985, “Wake Passing in a Turbine Rotor Cascade,” AGARD Conference Preprint 390, Bergen, Norway.
140.
Doorly, D. J., and Oldfield, M. L. G., 1985, “Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade,” ASME Paper No. 85-GT-112.
141.
Rigby, M. J., Johnson, A. B., Oldfield, M. L. G., and Jones, T. V., 1989, “Temperature Scaling of Turbine Blade Heat Transfer With and Without Shock Wave Passing,” Proc. 9th International Symposium on Air Breathing Engines, Athens, Greece.
142.
Hilditch, M. A., and Ainsworth, R. W., 1990, “Unsteady Heat Transfer Measurements on a Rotating Gas Turbine Blade,” ASME Paper No. 90-GT-175.
143.
Pfeil
,
H.
, and
Eifler
,
J.
,
1976
, “
Turbulenzverhaltnisse hinter rotierenden Zylindergittern
,”
Forschung im Ingenieurwesen
,
42
, pp.
27
32
.
144.
Schulte, V., 1995, “Unsteady Separated Boundary Layers in Axial-Flow Turbomachinery,” Ph.D. Dissertation, Cambridge University, United Kingdom.
145.
Banieghbal
,
M. R.
,
Curtis
,
E. M.
,
Denton
,
J. D.
,
Hodson
,
H. P.
,
Huntsman
,
I.
,
Schulte
,
V.
,
Harvey
,
N. W.
, and
Steele
,
A. B.
,
1995
, “
Wake Passing in LP Turbine Blades
,”
AGARD Conf. Proc.
, pp. 5–8 to 5–12.
146.
Cebeci, T., 1970, “Calculation of Compressible Turbulent Boundary Layers With Heat and Mass Transfer,” AIAA Paper No. 70–741.
147.
Ashworth
,
D. A.
,
LaGraff
,
J. E.
,
Schultz
,
D. L.
, and
Grindrod
,
K. J.
,
1985
, “
Unsteady Aerodynamic and heat Transfer Processes in a Transonic Turbine Stage
,”
J. Eng. Mech.
,
107
, pp.
1022
1030
.
148.
Denton, J. D., 1976, “Extension of the Finite Area Time-Marching Method to Three Dimensions,” von Karman Institute Lecture Series ’84.
149.
Dawes, W. N., 1986, “A Numerical Method for the Analysis of Three-Dimensional Viscous Compressible Flows in Turbine Cascades: Application to Secondary Flow Development in a Cascade With and Without Dihedral,” ASME Paper No. 86-GT-145.
150.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane–Blade Interaction in a Transonic Turbine, Part II—Heat Transfer
,”
J. Propul. Power
,
10
, No.
3
, pp.
312
317
.
151.
Lokay
,
V. I.
, and
Trushin
,
V. A.
,
1970
, “
Heat Transfer From the Gas and Flow-Passage Elements of a Rotating Gas Turbine
,”
Heat Transfer—Sov. Res.
,
2
, No.
4
, pp.
108
115
.
152.
Scholz, N., 1978, “Aerodynamics of Cascades,” AGARD–AG–229.
153.
Denton, J. D., 1993, “Loss Mechanisms in Turbomachines,” ASME Paper No. 93-GT-435.
154.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
, pp.
257
267
.
155.
Consigny, H. and Richards, B. E., 1981, “Short Duration Measurements of Heat Transfer Rate to a Gas Turbine Rotor Blade,” ASME Paper No. 81-GT-146.
156.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transf.
,
15
, pp.
301
314
.
157.
Joe, C. R., Montesdeoca, X. A., Soechting, F. O., MacArthur, C. D., and Meininger, M., 1998, “High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements With Comparisons to Prediction,” ASME Paper No. 98-GT-430.
158.
Sharma, O. P., 1987, “Momentum and Thermal Boundary Layer Development on Turbine Airfoil Suction Surfaces,” AIAA Paper No. 87–1918.
159.
Chima
,
R. V.
, and
Yokota
,
J. W.
,
1990
, “
Numerical Analysis of Three-Dimensional Internal Flows
,”
AIAA J.
,
28
, No.
5
, pp.
798
806
.
160.
Chima, R. V., 1991, “Viscous Three-Dimensional Calculation of Transonic Fan Performance,” presented at the AGARD Propulsion and Energetics Symposium on Computational Fluid Mechanics for Propulsion, San Antonio, TX.
161.
Giel, P. W., Bunker, R. S., Van Flossen, G. J., and Boyle, R. J., 2000, “Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade,” ASME Paper No. 2000-GT-209.
162.
Kirsten, T. J., Lippert, A. M., Snedden, G. C., and Smith, G. D. J., 1996, “Experimental Measurement and CFD Prediction of Heat Transfer to a Nozzle Guide Vane,” ASME Paper No. 96-GT-237.
163.
Bunker, R. S., 1997, “Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer,” ASME Paper No. 97-GT-135.
164.
Johnson, A. B., Oldfield, M. L. G., Rigby, M. J., and Giles, M. B., 1990, “Nozzle Guide Vane Shock Wave Propagation and Bifurcation in a Transonic Turbine Rotor,” ASME Paper No. 90-GT-310.
165.
Sato, T., and Takeishi, K., 1987, “Investigation of the Heat Transfer in High Temperature Gas Turbine Vanes,” ASME Paper No. 87-GT-137.
166.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
, pp.
524
529
.
167.
York, R. E., Hylton, L. D., and Mihelc, M. S., 1983, “An Experimental Investigation of Endwall Heat Transfer and Aerodynamics in a Linear Vane Cascade,” ASME Paper No. 83-GT-52.
168.
Kumar, G. N., Jenkins, R. M., and Sahu, U., 1985, “Regionally Averaged Endwall Heat Transfer Correlations for a Linear Vane Cascade,” ASME Paper No. 85-GT-19.
169.
Ha, C., 1989, “Numerical Study of Three-Dimensional Flow and Heat Transfer Near the Endwall of a Turbine Blade Row,” AIAA Paper No. 89–1689.
170.
Arts, T., and Heider, R., 1994, “Aerodynamic and Thermal Performance of a Three Dimensional Annular Transonic Nozzle Guide Vane. Part I: Experimental Investigation,” AIAA Paper No. 94-2929.
171.
Spencer, M. C., Lock, G. D., and Jones, T. V., 1995, “Endwall Heat Transfer and Aerodynamic Measurements in an Annular Cascade of Nozzle Guide Vanes,” ASME Paper No. 95-GT-356.
172.
Boyle
,
R. J.
, and
Jackson
,
R.
,
1997
, “
Heat Transfer Predictions for Two Turbine Nozzle Geometries at High Reynolds and Mach Numbers
,”
ASME J. Turbomach.
,
119
, pp.
270
283
.
173.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
, pp.
305
313
.
174.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
, pp.
558
568
.
175.
Blair
,
M. F.
,
1982
, “
Influence of Free-Stream Turbulence on Boundary-Layer Transition in Favorable Pressure Gradients
,”
ASME J. Eng. Power
,
104
, pp.
743
750
.
176.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier-Stokes Solution of Transonic Cascade Flows Using Non-periodic C-Type Grids
,”
J. Propul. Power
,
8
, No.
2
, pp.
410
417
.
177.
Bellows, W. J., and Mayle, R. E., 1986, “Heat Transfer Downstream of a Leading Edge Separation Bubble,” ASME Paper No. 86-GT-59.
178.
Gorla
,
R. S. R.
,
1986
, “
Combined Influence of Unsteady Free Stream Velocity and Free Stream Turbulence on Stagnation Point Heat Transfer
,”
Int. J. Turbo Jet Engines
,
3
, pp.
117
123
.
179.
Taulbee, D. B., Tran, L. T., and Dunn, M. G., 1988, “Stagnation Point and Surface Heat Transfer for a Turbine Stage: Prediction and Comparison With Data,” ASME Paper No. 88-GT-30.
180.
Hanford
,
A. J.
, and
Wilson
,
D. E.
,
1994
, “
The Effect of a Turbulent Wake on the Stagnation Point: Part II—Heat Transfer Results
,”
ASME J. Turbomach.
,
116
, pp.
46
56
.
181.
Funazaki
,
K.
,
1996
, “
Studies on Wake-Affected Heat Transfer Around the Circular Leading Edge of Blunt Body
,”
ASME J. Turbomach.
,
118
, pp.
452
460
.
182.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
, pp.
193
200
.
183.
Abuaf, N., Dorri, B., Lee, C. P., and Flodman, D. A., 1997, “Stagnation Point Heat Transfer With a Thermal Barrier Coated Cylinder,” ASME Paper No. 97-GT-385.
184.
Brenner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
, pp.
193
200
.
185.
Maslov, V. P., Mineev, B. I., Pichkov, K. N., Secundov, A. N., Vorobiev, A. N., Strelets, M. Kh., and Travin, A. K., 1999, “Turbulence Intensity, Length Scale, and Heat Transfer Around Stagnation Line of Cylinder and Model Blade,” ASME Paper No. 99-GT-423.
186.
Rae
,
W. J.
,
Taulbee
,
D. B.
,
Civinskas
,
K. C.
, and
Dunn
,
M. G.
,
1988
, “
Turbine-Stage Heat Transfer: Comparison of Short-Duration Measurements With State-of-the-Art Predictions
,”
J. Propul. Power
,
4
, No.
6
, pp.
541
548
.
187.
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Abhari
,
R. S.
, and
McMillan
,
M. L.
,
2000
, “
Influence of Vane/Blade Spacing on the Heat Flux for a Transonic Turbine
,”
ASME J. Turbomach.
,
122
, pp.
684
691
.
188.
Zilles, D. A., and Abhari, R. S., 1999, “Influence of Non-Isothermal Button Gage Surface Temperature in Heat Flux Measurement Applications,” Proc. IMECE99, Nashville, TN.
189.
Bergholz, R. F., Dunn, M. G., and Steuber, G. D., 2000, “Rotor/Stator Heat Transfer Measurements and CFD Predictions for Short-Duration Turbine Rig Tests,” ASME Paper No. 2000-GT-208.
190.
Narcus, A. R., Przirembel, H. R., and Soechting, F. O., 1996, “Evaluation of the External Heat Transfer Coefficient in the High-Pressure Turbine of a Full-Scale Core Engine,” ASME Paper No. 96-GT-172.
191.
Soechting, F. O., and Sharma, O. P., 1988, “Design Code Verification of External Heat Transfer Coefficients Around a Turbine Airfoil,” AIAA Paper No. 88–3011.
192.
Tran, L. T., and Taulbee, D. B., 1991, “Prediction of Unsteady Rotor-Surface Pressure and Heat Transfer From Wake Passings,” ASME Paper No. 91-GT-267.
193.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
1995
, “
Phase-Resolved Surface Pressure and Heat Transfer Measurements on the Blade of a Two-Stage Turbine
,”
ASME J. Fluids Eng.
,
117
, pp.
653
658
.
194.
Bunker, R. S., 2000, “A Review of Turbine Blade Tip Heat Transfer,” presented at Turbine 2000 International Symposium on Heat Transfer in Gas Turbine Systems, Izmir, Turkey.
1.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
, pp.
284
292
;
2.
“Part II—Source Flow Effects on Blade Suction Sides,” ASME J. Turbomach., 111, pp. 293–300.
1.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor-Tip Leakage: Part I—Basic Methodology
,”
ASME J. Eng. Power
,
104
, pp.
154
161
.
2.
Wadia
,
A. R.
, and
Booth
,
T. C.
,
1982
, “
Rotor Tip Leakage: Part 2—Design Optimization Through Viscous Analysis and Experiment
,”
ASME J. Eng. Power
,
104
, pp.
162
169
.
3.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
, pp.
578
584
.
4.
Yaras, M. I., and Sjolander, S. A., 1991, “Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades,” ASME Paper No. 91-GT-127.
5.
Basson
,
A.
, and
Lakshminarayana
,
B.
,
1995
, “
Numerical Simulation of Tip Clearance Effects in Turbomachinery
,”
ASME J. Turbomach.
,
117
, pp.
348
359
.
6.
Mayle, R. E., and Metzger, D. E., 1982, “Heat Transfer at the Tip of an Unshrouded Turbine Blade,” Proc. 7th International Heat Transfer Conference, Vol. 3, pp. 87–92.
7.
Heyes, F. J. G., and Hodson, H. P., 1992, “The Measurement and Prediction of the Tip Clearance Flow in Linear Turbine Cascades,” ASME Paper No. 92-GT-214.
8.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
, pp.
753
759
.
9.
Bindon, J. P., 1986, “Pressure and Flowfield Measurements of Axial Turbine Tip Clearance Flow in a Linear Cascade,” Cambridge University Engineering Department, TR 123.
10.
Allen, H. W., and Kofskey, M. G., 1955, “Visualization Studies of Secondary Flows in Turbine Rotor Tip Regions,” NACA TN 3519.
11.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys. Heat Transfer
,
1
, No.
3
, pp.
247
252
.
12.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
13.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
79
.
14.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
692
698
.
15.
Bunker, R. S., Bailey, J. C., and Ameri, A., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine, Part I: Experimental Results,” NASA TM 1999-209152.
16.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
2000
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 2: Simulation Results
,”
ASME J. Turbomach.
,
122
, pp.
272
277
.
17.
Rigby, D. L., Ameri, A. A., and Steinthorsson, E., 1996, “Internal Passage Heat Transfer Prediction Using Multiblock Grids and k–ω Turbulence Model,” ASME Paper No. 96-GT-188.
18.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
19.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer,” ASME Paper No. 96-GT-189.
20.
Ameri, A. A., and Steinthorsson, E., 1995, “Prediction of Unshrouded Rotor Blade Tip Heat Transfer,” ASME Paper No. 95-GT-142.
21.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analysis of Heat Flux Data in a Turbine Stage: Part II—Discussion of Results and Comparison With Predictions
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
234
240
.
22.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
,
116
, pp.
14
22
.
23.
Epstein, A. H., Guenette, G. R., and Norton, R. J. G., 1985, “Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field,” AIAA Paper No. 85–1220.
24.
Dunn, M. G., and Kim, J., 1995, “Turbine Blade Platform, Blade Tip and Shroud Heat Transfer,” Proc. Int. Soc. Airbreathing Engines, Melbourne, Australia.
25.
Dunn
,
M. G.
,
1990
, “
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
,”
ASME J. Turbomach.
,
112
, pp.
531
538
.
26.
Hawthorne
,
W. R.
,
1951
, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. London, Ser. A
,
206
, pp.
374
387
.
27.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
,
1973
, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Co-Ordinates
,”
J. Fluid Mech.
,
59
, pp.
97
115
.
28.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Power
,
92
, pp.
359
369
.
29.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
, pp.
347
357
.
30.
Dorney
,
D. J.
, and
Schwab
,
J. R.
,
1995
, “
Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine
,”
ASME J. Turbomach.
,
118
, pp.
783
791
.
31.
Saxer
,
A. P.
, and
Felici
,
H. M.
,
1996
, “
Numerical Analysis of Three-Dimensional Unsteady Hot Streak Migration and Shock Interaction in a Turbine Stage
,”
ASME J. Turbomach.
,
118
, pp.
268
277
.
32.
Dorney, D. J., and Sondak, D. L., 1996, “Study of Hot Streak Phenomena in Subsonic and Transonic Flows,” ASME Paper No. 96-GT-98.
33.
Gundy-Burlet, K. and Dorney, D. J., 1997, “Influence of 3D Hot Streaks on Turbine Heat Transfer,” ASME Paper No. 97-GT-422.
34.
Shang
,
T.
, and
Epstein
,
A. H.
,
1996
, “
Analysis of Hot Streak Effects on Turbine Rotor Load
,”
ASME J. Turbomach.
,
119
, pp.
544
553
.
35.
Bohn, D., Funke, H., and Gier, J., 1999, “Numerical and Experimental Investigations on the Flow in a 4-Stage Turbine With Special Focus on the Development of a Radial Temperature Streak,” ASME Paper No. 99-GT-27.
36.
Boyle, R. J., and Giel, P. W., 1997, “Prediction of Nonuniform Inlet Temperature Effects on Vane and Rotor Heat Transfer,” ASME Paper No. 97-GT-133.
37.
Saxer, A. P., 1992, “A Numerical Analysis of Three-Dimensional Inviscid Stator Rotor Interactions Using Non-reflecting Boundary Conditions,” Ph.D. Thesis, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA.
38.
Shang, T., 1995, “Influence of Inlet Temperature Distortion on Turbine Heat Transfer,” Ph.D. Thesis, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA.
39.
Shang, T., Guenette, G. R., Epstein, A. H., and Saxer, A. P., 1995, “The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine,” AIAA Paper No. 95-3042.
40.
Orkwis, P. D., Turner, M. G., and Barter, J. W., 2000, “Linear Deterministic Source Terms for Hot Streak Simulations,” ASME Paper No. 2000-GT-509.
41.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
, pp.
64
71
.
1.
Roback, R. J., and Dring, R. P., 1992, “Hot Streaks and Phantom Cooling in a Turbine Rotor Passage. Part I—Separate Effects,” ASME Paper No. 92-GT-75;
2.
and “Part II—Combined Effects and Analytical Modeling,” ASME Paper No. 92-GT-76.
1.
Garg, V. K., and Abhari, R. S., 1996, “Comparison of Predicted and Experimental Nusselt Number for a Film Cooled Rotating Blade,” ASME Paper No. 96-GT-223 (see also “Comparison of Predicted and Experimental Nusselt Number for a Film Cooled Rotating Blade,” Int. J. Heat Fluid Flow, 18, No. 5, pp. 452–460).
2.
Dorney, D. J., and Gundy-Burlet, K., 1995, “Hot-Streak Clocking Effects in a 1-1/2 Stage Turbine,” ASME Paper No. 95-GT-202.
3.
Dorney, D. J., and Sharma, O. P., 1996, “A Study of Turbine Performance Increases Through Airfoil Clocking,” AIAA Paper No. 96–2816.
4.
Huber
,
F. W.
,
Johnson
,
P. D.
,
Sharma
,
O. P.
,
Staubach
,
J. B.
, and
Gaddis
,
S. W.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils: Part I—Experimental Investigation
,”
ASME J. Turbomach.
,
118
, pp.
630
635
.
5.
Griffin
,
L. W.
,
Huber
,
F. W.
, and
Sharma
,
O. P.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils: Part 2—Numerical Simulation
,”
ASME J. Turbomach.
,
118
, pp.
636
642
.
6.
Eulitz, F., Engel, K., and Gebing, H., 1996, “Numerical Investigation of the Clocking Effects in a Multistage Turbine,” ASME Paper No. 96-GT-26.
7.
Gundy-Burlet, K., and Dorney, D. J., 1997, “Physics of Airfoil Clocking in Axial Compressors,” ASME Paper No. 97-GT-444.
8.
Johnson, D. A., and Fleeter, S., 1999, “Turbine Blade Unsteady Heat Transfer Change Due to Stator Indexing,” ASME Paper No. 99-GT-376.
9.
Tiedemann
,
M.
, and
Kost
,
F.
,
2000
, “
Some Aspects of Wake–Wake Interactions Regarding Turbine Stator Clocking
,”
ASME J. Turbomach.
,
123
, pp.
526
533
.
10.
Kercher
,
D. M.
,
1998
, “
A Film Cooling CFD Bibliography: 1971-1996
,”
Int. J. Rotating Mach.
,
4
, No.
1
, pp.
61
72
.
11.
Kercher
,
D. M.
,
2000
, “
Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972-1998
,”
Int. J. Rotating Mach.
,
6
, No.
5
, pp.
313
319
.
12.
Bohn, D., Kusterer, K., and Schonenborn, H., 1996, “Three-Dimensional Numerical Simulation of the Flow Through a Turbine Blade Cascade With Cooling Injection at the Leading Edge,” ASME Paper No. 96-GT-150.
13.
Bohn, D. E., Becker, V. J., and Rungen, A. U., 1997, “Experimental and Numerical Conjugate Flow and Heat Transfer Investigation of a Shower-Head Cooled Turbine Guide Vane,” ASME Paper No. 97-GT-15.
14.
Bohn
,
D. E.
, and
Kusterer
,
K. A.
,
1999
, “
Aerothermal Investigations of Mixing Flow Phenomena in Case of Radially Inclined Ejection Holes at the Leading Edge
,”
ASME J. Turbomach.
,
122
, pp.
334
339
.
15.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Aerodynamic Aspects of Endwall Film Cooling
,”
ASME J. Turbomach.
,
119
, pp.
786
793
.
16.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film Cooling Configuration
,”
ASME J. Turbomach.
,
121
, pp.
772
780
.
17.
Leylek
,
J. H
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
, pp.
358
368
.
18.
Hyams, D. G., McGovern, K. T., and Leylek, J. H., 1996, “Effects of Geometry on Slot-Jet Film Cooling Performance,” ASME Paper No. 96-GT-187.
19.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
, pp.
133
145
.
20.
Drost, U., Bolcs, A., and Hoffs, A., 1997, “Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil,” ASME Paper No. 97-GT-26.
21.
Reiss
,
H.
, and
Bolcs
,
A.
,
2000
, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
, pp.
162
170
.
22.
Martiny, M., Schulz, A., Wittig, S., and Dilzer, M., 1997, “Influence of a Mixing-Jet on Film Cooling,” ASME Paper No. 97-GT-247.
23.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.
24.
Wittig, S., Schulz, A., Gritsch, M., and Thole, K. A., 1996, “Transonic Film Cooling Investigations: Effects of Hole Shapes and Orientations,” ASME Paper No. 96-GT-222.
25.
Andrews, G. E., Asere, A. A., Mkpadi, M. C., and Tirmahi, A., 1986, “Transpiration Cooling: Contribution of Film Cooling to the Overall Cooling Effectiveness,” ASME Paper No. 86-GT-136.
26.
Bazdidi-Tehrani, F., and Andrews, G. E., 1997, “Full Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio (Part II),” ASME Paper No. 97-GT-341.
27.
Goldstein
,
R. J.
, and
Yoshida
,
T.
,
1982
, “
The Influence of a Laminar Boundary Layer and Laminar Injection on Film Cooling Performance
,”
ASME J. Heat Transfer
,
104
, pp.
355
362
.
28.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1997
, “
Total-Coverage Discrete Hole Wall Cooling
,”
ASME J. Turbomach.
,
119
, pp.
320
329
.
29.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
, pp.
791
798
.
30.
Berhe
,
M. K.
, and
Patankar
,
S. V.
,
1999
, “
Investigation of Discrete-Hole Film Cooling Parameters Using Curved-Plate Models
,”
ASME J. Turbomach.
,
121
, pp.
792
803
.
31.
Louis, J. F., 1975, “Shock Tunnel Studies of Heat Transfer and Film Cooling Effectiveness,” Proc. Tenth International Shock Tube Symposium, Kyoto, Japan.
32.
Abhari, R. S., and Epstein, A. H., 1992, “An Experimental Study of Film Cooling in a Rotating Transonic Turbine,” ASME Paper No. 92-GT-201.
33.
Jones, T. V., and Schultz, D. L., 1971, “Film Cooling Studies in Subsonic and Supersonic Flows Using a Shock Tunnel,” Proc. Eighth International Shock Tube Symposium, London, U. K.
34.
Byerley, A. R., Ireland, P. T., Jones, T. V., and Ashton, S. A., 1988, “Detailed Heat Transfer Measurements Near and Within the Entrance of a Film Cooling Hole,” ASME Paper No. 88-GT-155.
35.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
1999
, “
The Influence of Film Cooling on the Efficiency of an Annular Nozzle Guide Vane Cascade
,”
ASME J. Turbomach.
,
121
, pp.
145
151
.
36.
Yavuzkurt, S., 1985, “Full-Coverage Film Cooling: A One-Equation Model of Turbulence for the Calculation of the Full-Coverage and the Recovery-Region Hydrodynamics,” ASME Paper No. 85-GT-119.
37.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
1999
, “
Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling
,”
Proc. Inst. Mech. Eng.
,
213
, Part A, pp.
103
118
.
38.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection. Part 2; External Aerodynamics, Total Pressure Losses and Predictions
,”
ASME J. Turbomach.
,
123
, pp.
238
338
.
39.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.
40.
Koli
,
A.
, and
Bogard
,
D. G.
,
1998
, “
Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
, pp.
785
790
.
41.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
, pp.
707
715
.
42.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1988
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
, pp.
799
806
.
43.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1997
, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
,
119
, pp.
594
600
.
44.
Ligrani
,
P. M.
, and
Mitchell
,
S. W.
,
1994
, “
Effects of Embedded Vortices on Injectant From Film Cooling Holes With Large Spanwise Spacing and Compound Angle Orientations in a Turbulent Boundary Layer
,”
ASME J. Turbomach.
,
116
, pp.
709
720
.
45.
Ligrani
,
P. M.
, and
Ramsey
,
A. E.
,
1997
, “
Film Cooling From Spanwise-Oriented Holes in Two Staggered Rows
,”
ASME J. Turbomach.
,
119
, pp.
562
567
.
46.
Ligrani
,
P. M.
,
Gong
,
R.
, and
Cuthrell
,
J. M.
,
1997
, “
Bulk Flow Pulsations and Film Cooling: Flow Structure Just Downstream of the Holes
,”
ASME J. Turbomach.
,
119
, pp.
568
573
.
47.
Lemmon, C. A., Kohli, A., and Thole, K. A., 1999, “Formation of Counterrotating Vortices in Film Cooling Flows,” ASME Paper No. 99-GT-161.
48.
Wilfert
,
G.
, and
Fottner
,
L.
,
1996
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade
,”
ASME J. Turbomach.
,
118
, pp.
468
478
.
49.
Hoecker, R., Johnson, B. V., and Hausladen, J., 1999, “Impingement Cooling Experiments With Flat Plate and Pin Plate Target Surfaces,” ASME Paper No. 99-GT-252.
50.
Abuaf, N., and Cohn, A., 1988, “Gas Turbine Heat Transfer With Alternate Cooling Flows,” ASME Paper No. 88-GT-16.
51.
Buck, F. A., and Prakash, C., 1995, “Design and Evaluation of a Single Passage Test Model to Obtain Turbine Airfoil Film Cooling Effectiveness Data,” ASME Paper No. 95-GT-19.
52.
Bunker, R. S., 2000, “Effect of Partial Coating Blockage on Film Cooling Effectiveness,” ASME Paper No. 2000-GT-244.
53.
Takeishi, K., Aoki, S., Sato, T., and Tsukagoshi, K, 1991, “Film Cooling on a Gas Turbine Rotor Blade,” ASME Paper No. 91-GT-279.
54.
Heidmann, J. D., 1995, “A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling,” AIAA Paper No. 95–3044.
55.
Garg, V. K., 1999, “Heat Transfer on a Film Cooled Rotating Blade,” ASME Paper No. 99-GT-44 (see also “Heat Transfer on a Film Cooled Rotating Blade,” Int. J. Heat Fluid Flow, 21, 2000, pp. 134–145).
56.
Rigby, M. J., Johnson, A. B., and Oldfield, M. L. G., 1990, “Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes,” ASME Paper No. 90-GT-78.
57.
Lander
,
R. D.
,
Fish
,
R. W.
, and
Suo
,
M.
,
1972
, “
External Heat Transfer Distribution on Film Cooled Turbine Vanes
,”
J. Aircr.
,
9
, No.
10
, pp.
707
714
.
58.
Elovic
,
E.
, and
Koffel
,
W. K.
,
1983
, “
Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems
,”
Int. J. Turbo Jet-Engines
,
1
, pp.
45
65
.
59.
Miller, K. L., and Crawford, M. E., 1984, “Numerical Simulation of Single, Double, and Multiple Row Film Cooling Effectiveness and Heat Transfer,” ASME Paper No. 84-GT-112.
60.
Tafti
,
D. K.
, and
Yavuzkurt
,
S.
,
1987
, “
Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications
,”
ASME J. Turbomach.
,
109
, pp.
504
511
.
61.
Neelakantan, S., and Crawford, M. E., 1995, “Prediction of Film Cooling Effectiveness and Heat Transfer Due to Streamwise and Compound Angle Injection on Flat Surfaces,” ASME Paper No. 95-GT-151.
62.
Neelakantan, S., and Crawford, M. E., 1996, “Prediction of Effectiveness and Heat Transfer Using a New Two-Dimensional Injection and Dispersion Model of the Film Cooling Process,” ASME Paper No. 96-GT-224.
63.
Weigand, B., Bonhoff, B., and Ferguson, J. R., 1997, “A Comparative Study Between 2D Boundary Layer Predictions and 3D Navier-Stokes Calculations for a Film Cooled Vane,” ASME National Heat Transfer Conference, ASME HTD-Vol. 350, pp. 213–221.
64.
Rivir, R. B., Roqumore, W. M., and McCarthy, J. W., 1987, “Visualization of Film Cooling Flows Using Laser Sheet Light,” AIAA Paper No. 87-1914.
65.
Gogineni, S. P., Trump, D. D., Rivir, R. B., and Pestian, D. J., 1996, “PIV Measurements of Periodically Forced Flat Plate Film Cooling Flows With High Free Stream Turbulence,” ASME Paper No. 96-GT-236.
66.
Rivir, R. B., and Gogineni, S. P., 1996, “Characteristics of Simulated Turbine Film Cooling Flows,” Proc. Int. Congress on Fluid Dynamics and Propulsion, Cairo, Egypt, Vol. 1, pp. 95–107.
67.
Rivir, R. B., Gogineni, S. P., Goss, L. P., and Pestian, D. J., 1997, “The Unsteady Structure of Simulated Turbine Film Cooling Flows From PIV,” Paper No. 47, AGARD Propulsion and Energetics Panel, 90th Symp. Nonintrusive Measurement Techniques for Propulsion Engines, Brussels, Belgium.
68.
Ou, S., Rivir, R., and Meininger, M., 2000, “Transient Liquid Crystal Measurement of Leading Edge Film Cooling Effectiveness and Heat Transfer With High Free Stream Turbulence,” ASME Paper No. 2000-GT-245.
69.
Joslyn, H. D., Caspar, J. R., and Dring, R. P., 1985, “Inviscid Modeling of Turbomachinery Wake Transport,” AIAA Paper No. 85-1132.
70.
Cicatelli
,
G.
, and
Sieverding
,
C. H.
,
1997
, “
The Effect of Vortex Shedding on the Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade
,”
ASME J. Turbomach.
,
119
, pp.
810
819
.
71.
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1998
, “
On the Interpretation of Measured Profile Losses in Unsteady Wake—Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
,
120
, pp.
276
284
.
72.
Pappu, K. R., and Schobeiri, M. T., 1997, “Optimization of Trailing Edge Ejection Mixing Losses: A Theoretical and Experimental Study,” ASME Paper No. 97-GT-523.
73.
Schobeiri
,
T.
,
1989
, “
Optimum Trailing Edge Ejection for Cooled Gas Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
510
514
.
74.
Deckers, M., and Denton, J. D., 1997, “The Aerodynamics of Trailing-Edge-Cooled Transonic Turbine Blades: Part 1—Experimental Approach,” ASME Paper No. 97-GT-518.
75.
Deckers, M., and Denton, J. D., 1997, “The Aerodynamics of Trailing-Edge-Cooled Transonic Turbine Blades: Part 2—Theoretical and Computational Approach,” ASME Paper No. 97-GT-519.
76.
Kapteijn
,
C.
,
Amecke
,
J.
, and
Michelassi
,
V.
,
1996
, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Ejection: Part I—Experimental Approach
,”
ASME J. Turbomach.
,
118
, pp.
519
528
.
77.
Dunn
,
M. G.
,
1986
, “
Heat Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time-Averaged Results
,”
ASME J. Turbomach.
,
108
, pp.
90
97
.
78.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
119
, pp.
242
248
.
79.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1999
, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
121
, pp.
448
455
.
80.
Abhari, R. S., and Epstein, A. H., 1992, “An Experimental Study of Film Cooling in a Rotating Transonic Turbine,” ASME Paper No. 92-GT-201.
81.
Goldstein, R. J., and Haji-Sheik, A., 1967, “Prediction of Film Cooling Effectiveness,” Proc. JSME 1967 Semi-International Symposium, pp. 213–218.
82.
Schonung
,
B.
, and
Rodi
,
W.
,
1987
, “
Prediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary Layer Procedure
,”
ASME J. Turbomach.
,
109
, pp.
579
587
.
83.
Haas
,
W.
,
Rodi
,
W.
, and
Schonung
,
B.
,
1992
, “
The Influence of Density Difference Between Hot and Cold Gas on Film Cooling by a Row of Holes: Predictions and Experiments
,”
ASME J. Turbomach.
,
114
, pp.
747
755
.
84.
Camci
,
C.
,
1989
, “
An Experimental and Numerical Investigation of Near Cooling Hole Heat Fluxes on a Film Cooled Turbine Blade
,”
ASME J. Turbomach.
,
111
, pp.
63
70
.
85.
Garg, V. K., and Gaugler, R. E., 1994, “Prediction of Film Cooling on Gas Turbine Airfoils,” ASME Paper No. 94-GT-16.
86.
Garg, V. K., 1997, “Comparison of Predicted and Experimental Heat Transfer on a Film Cooled Rotating Blade Using a Two-Equation Turbulence Model,” ASME Paper No. 97-GT-220.
87.
Garg
,
V. K.
, and
Gaugler
,
R. E.
,
1997
, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
343
351
.
88.
Steinthorsson, E., Liou, M. S., and Povinelli, L. A., 1993, “Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries,” AIAA Paper No. 93–2380.
89.
Steinthorsson, E., Ameri, A. A., and Rigby, D. L., 1997, “TRAF3D.MB—A Multi-Block Flow Solver for Turbomachinery Flows,” AIAA Paper No. 97–996.
90.
Traci
,
R. M.
, and
Wilcox
,
D. C.
,
1975
, “
Freestream Turbulence Effects on Stagnation Point Heat Transfer
,”
AIAA J.
,
13
, No.
7
, pp.
890
896
.
91.
Bayley, F. J., and Priddy, W. J., 1980, “Effects of Free-Stream Turbulence Intensity and Frequency on Heat Transfer to Turbine Blading,” ASME Paper No. 80-GT-79.
92.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part I—Experimental Data, and Part II—Analysis of Results
,”
ASME J. Heat Transfer
,
105
, pp.
33
47
.
93.
O’Brien, J. E., and VanFlossen, G. J., 1985, “The Influence of Jet-Grid Turbulence on Heat Transfer From the Stagnation Region of a Cylinder in Crossflow,” ASME Paper No. 85-GT-58.
94.
Ames, R. E., and Moffat, R. J., 1990, “Heat Transfer With High Intensity Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point,” Report No. HMT-44, Thermosciences Division of Mechanical Engineering, Stanford University.
95.
Dullenkopf, K., and Mayle, R. E., 1992, “The Effects of Incident Turbulence and Moving Wakes on Laminar Heat Transfer in Gas Turbines,” ASME Paper No. 92-GT-377.
96.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1995
, “
Enhanced Heat Transfer and Shear Stress Due to High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
117
, pp.
418
424
.
97.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
, pp.
23
30
.
98.
Yavuzkurt
,
S.
,
1997
, “
Effects of Free-Stream Turbulence on the Instantaneous Heat Transfer in a Wall Jet Flow
,”
ASME J. Turbomach.
,
119
, pp.
359
417
.
99.
Ames, F. E., Kwon, O., and Moffat, R. J., 1999, “An Algebraic Model for High Intensity Large Scale Turbulence,” ASME Paper No. 99-GT-160.
100.
Moore, J. G., and Moore, J., 1999, “Realizability in Turbulence Modelling for Turbomachinery CFD,” ASME Paper No. 99-GT-24.
101.
Volino
,
R. J.
,
1998
, “
A New Model for Free-Stream Turbulence Effects on Boundary Layers
,”
ASME J. Turbomach.
,
120
, pp.
613
620
.
102.
Van Flossen
,
G. J.
, and
Bunke
,
R. S.
,
2001
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
,
123
, pp.
140
146
103.
Moss, R. W., and Oldfield, M. L. G., 1992, “Measurement of the Effect of Free-Stream Turbulence Length Scale on Heat Transfer,” ASME Paper No. 92-GT-244.
104.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1995
, “
An Account of Free-Stream Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
, pp.
401
406
.
105.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Turbulence Spectra and Length Scales Measured in Film Coolant Flows Emerging From Discrete Holes
,”
ASME J. Turbomach.
,
121
, pp.
551
557
.
106.
Walker, G. J., 1992, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion,” ASME Paper No. 92-GT-301.
107.
Addison, J. S., and Hodson, H. P., 1991, “Modelling of Unsteady Transitional Boundary Layers,” ASME Paper No. 91-GT-282.
108.
Ameri
,
A. A.
, and
Arnone
,
A.
,
1996
, “
Transition Modeling Effects on Turbine Rotor Blade Heat Transfer Predictions
,”
ASME J. Turbomach.
,
118
,
No. 4
No. 4
.
109.
Blair, M. F., 1991, “The Effects of Reynolds Number, Rotor Incidence Angle, and Surface Roughness on the Heat Transfer Distribution in a Large Scale Turbine Rotor,” UTRC Report No. R91-970057-3.
1.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture,
ASME J. Turbomach.
,
119
, pp.
114
127
.
2.
Part 2 of 4—Compressors
,”
119
, pp.
426
444
;
3.
Part 3 of 4—LP Turbines
,”
119
, pp.
225
237
;
4.
Part 4 of 4—Computations and Analyses
119
, pp.
128
139
.
1.
Emmons
,
H. W.
,
1951
, “
The Laminar–Turbulent Transition in a Boundary Layer—Part I
,”
J. Aeronaut. Sci.
,
18
, No.
7
, pp.
490
498
.
2.
Tiedemann, M., and Kost, F., 1999, “Unsteady Boundary Layer Transition on a High Pressure Turbine Rotor Blade,” ASME Paper No. 99-GT-194.
3.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1995
, “
Bypass Transition in Boundary Layers Including Curvature and Favorable Pressure Gradient Effects
,”
ASME J. Turbomach.
,
117
, pp.
166
174
.
4.
Clark
,
J. P.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1994
, “
On the Propagation of Naturally Occurring Turbulent Spots
,”
J. Eng. Math.
,
38
, pp.
1
19
.
5.
Boyle
,
R. J.
, and
Simon
,
F. F.
,
1999
, “
Mach Number Effects on Turbine Blade Transition Length Prediction
,”
ASME J. Turbomach.
,
121
, pp.
694
702
.
6.
Simon
,
F. F.
,
1995
, “
The Use of Transition Region Characteristics to Improve the Numerical Simulation of Heat Transfer in Bypass Transitional Flows
,”
Int. J. Rotating Mach.
,
2
, No.
2
, pp.
93
102
.
7.
Solomon, W. J., Walker, G. J., and Gostelow, J. P., 1995, “Transition Length Prediction for Flows With Rapidly Changing Pressure Gradient,” ASME Paper No. 95-GT-241.
8.
Rivir, R. B., Elrod, W. C., and Dunn, M. G., 1985, “Two Spot Laser Velocimeter Measurements of Velocity and Turbulence Intensity in Shock Tube Driven Turbine Flows,” AGARD Heat Transfer and Cooling in Gas Turbines, Conference Proc. No. 390, pp. 33-1 to 33-12, Bergen, Norway.
9.
Kadotani
,
K.
, and
Goldstein
,
R. J.
,
1979
, “
On the Nature of Jets Entering a Turbulent Flow: Part A. Jet-Mainstream Interaction and Part B. Film Cooling Performance
,”
ASME J. Eng. Power
,
101
, pp.
459
470
.
10.
Bons, J. P., MacArthur, C. D., and Rivir, R. B., 1994, “The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness,” ASME Paper No. 94-GT-51.
11.
Bons, J. P., Rivir, R. B., and MacArthur, C. D., 1995, “The Effect of Unsteadiness on Film Cooling Effectiveness,” AIAA Paper No. 95–306.
12.
Drost, U., and Bolcs, A., 1999, “Performance of a Turbine Airfoil With Multiple Film Cooling Stations. Part I: Heat Transfer and Film Cooling Effectiveness,” ASME Paper No. 99-GT-171.
13.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
, pp.
488
496
.
14.
Granser, D., and Schulenberg, T., 1990, “Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud,” ASME Paper No. 90-GT-95.
15.
Friedrichs, S., Hodson, H. P., and Dawes, W. N., 1995, “Distribution of Film Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique,” ASME Paper No. 95-GT-1.
16.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116, pp
730
737
.
17.
Funazaki, K., Yokota, M., and Yamawaki, S., 1995, “Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body,” ASME Paper No. 95-GT-183.
18.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
, pp.
808
817
.
19.
Baughn, J. W., Butler, R. J., Byerley, A. R., and Rivir, R. B., 1995, “An Experimental Investigation of Heat Transfer, Transition, and Separation on Turbine Blades at Low Reynolds Number and High Turbulence Intensity,” ASME Paper No. 95-WA/HT-25.
20.
Maciejewski, P. K., and Rivir, R. B., 1994, “Effects of Surface Riblets and Free-Stream Turbulence on Heat Transfer in a Linear Turbine Cascade,” ASME Paper No. 94-GT-245.
21.
Welsh, S. T., Barlow, D. N., Butler, R. J., VanTreuren, K. W., Byerley, A. R., and Baughn, J. W., 1997, “Effect of Passive and Active Air Jet Turbulence on Turbine Blade Heat Transfer,” ASME Paper No. 97-GT-131.
22.
Binder, A., Schroeder, T., and Hourmouziadis, J., 1988, “Turbulence Measurements in a Multistage Low-Pressure Turbine,” ASME Paper No. 88-GT-79.
23.
Hodson, H. P., 1998, “Bladerow Interactions in Low Pressure Turbines,” Blade Row Interference Effects in Axial Turbomachinery Stages, von Karman Institute for Fluid Dynamics, Lecture Series 1998–02.
24.
Arndt, N., 1991, “Blade Row Interaction in a Multistage Low-Pressure Turbine,” ASME Paper No. 91-GT-283.
25.
Sharma, O., 1998, “Impact of Reynolds Number on LP Turbine Performance,” Minnowbrook Workshop on Boundary Layer Transition in Turbomachines, J. E. LaGraff and D. E. Ashpis, eds.; pp. 65–69 (see also NASA/CP-1998-206958).
26.
Hourmouziadis, J., Buckl, F., and Bergmann, P., 1986, “The Development of the Profile Boundary Layer in a Turbine Environment,” ASME Paper No. 86-GT-244.
27.
Hodson, H. P., Huntsman, I., and Steele, A. B., 1993, “An Investigation of Boundary Layer Development in a Multistage LP Turbine,” ASME Paper No. 93-GT-310.
28.
Schulte
,
V.
, and
Hodson
,
H. P.
, 0
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
, pp.
28
35
.
29.
Rivir, R. B., 1996, “Transition on Turbine Blades and Cascades at Low Reynolds Numbers,” AIAA Paper No. 96–2079.
30.
Murawski, C. G., Sondergaard, R., Rivir, R. B., Vafi, K, Simon, T. W., and Volino, R. J., 1997, “Experimental Study of the Unsteady Aerodynamics in a Linear Cascade With Low Reynolds Number Low Pressure Turbine Blades,” ASME Paper No. 97-GT-95.
31.
Solomon, W. J., 2000, “Effects of Turbulence and Solidity on the Boundary Layer Development in a Low Pressure Turbine,” ASME Paper No. 2000-GT-0273.
32.
Rivir, R. B., Sondergaard, R., Bons, J. P., and Lake, J. P., 2000, “Application of Longitudinal Vortices for Control of Separation in Turbine Boundary Layers,” International Workshop Organized Vortical Motion as a Basis for Boundary-Layer Control, Kiev, Ukraine, Sept. 20–22.
33.
Rivir, R. B., Sondergaard, R., Bons, J. P., and Lake, J. P., 2000, “Passive and Active Control of Separation in Gas Turbines,” AIAA Paper No. 2000–2235.
34.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
, pp.
198
206
.
35.
Lake, J. P., King, P. I., and Rivir, R. B., 2000, “Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves,” AIAA Paper No. 00–738.
36.
Wisler, D. C., 2000, private communication, 10 Oct.
37.
Howell
,
R.
,
Ramesh
,
O.
, and
Hodson
,
H. P.
,
2001
, “
High Lift and Aft Loaded Profiles for Low Pressure Turbines
,”
ASME J. Turbomach.
,
123
, pp.
181
188
.
38.
Sharma
,
O. P.
,
Wells
,
R. A.
,
Schlinker
,
R. H.
, and
Bailey
,
D. A.
,
1982
, “
Boundary Layer Development on Turbine Airfoil Suction Surfaces
,”
ASME J. Eng. Power
,
104
, pp.
698
706
.
39.
Hourmouziadis, J., 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series 167.
40.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
, and
Howell
,
R. J.
,
1997
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
, pp.
531
538
.
41.
Cobley, K., Coleman, N., Siden, G., and Arndt, N., 1997, “Design of New Three Stage Low Pressure Turbine for the BMW Rolls Royce BR715 Turbofan Engine,” ASME Paper No. 97-GT-419.
42.
Qiu, S., and Simon, T. W., 1997, “An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows,” ASME Paper No. 97-GT-455.
43.
Bons, J. P., Sondergaard, R., and Rivir, R. B., 1999, “Control of Low-Pressure Turbine Separation Using Vortex Generator Jets,” AIAA Paper No. 99-367.
44.
Blair, M. F., and Anderson, O. L., 1989, “The Effect of Reynolds Number, Rotor Incidence Angle and Surface Roughness on the Heat Transfer Distribution in Large-Scale Turbine Rotor Passage,” United Technologies Research Center, Report UTRC-R89-957852-24.
45.
Boyle, R. J., and Civinskas, K. C., 1991, “Two-Dimensional Navier–Stokes Heat Transfer Analysis for Rough Turbine Blades,” AIAA Paper No. 91-2129.
46.
Taylor, R. P., Taylor, J. K., Hosni, M. H., and Coleman, H. W., 1991, “Heat Transfer in the Turbulent Boundary Layer With a Step Change in Surface Roughness,” ASME Paper No. 91-GT-266.
47.
Blair
,
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
,
116
, pp.
1
13
.
48.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
,
1993
, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
,
115
, pp.
614
620
.
49.
Boyle
,
R. J.
,
1994
, “
Prediction of Surface Roughness and Incidence Effects on Turbine Performance
,”
ASME J. Turbomach.
,
116
, pp.
745
751
.
50.
Cebeci
,
T.
, and
Chang
,
X. X.
,
1978
, “
Calculation of Incompressible Rough-Wall Boundary Layer Flows
,”
AIAA J.
,
16
, No.
7
, pp.
730
735
.
51.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
111
116
.
52.
Hippensteele, S. A., Russell, L. M., and Torres, F. J., 1987, “Use of a Liquid-Crystal, Heater-Element Composite for Quantitative, High-Resolution Heat Transfer Coefficients on a Turbine Airfoil, Including Turbulence and Surface Roughness Effects,” NASA TM-87355.
53.
Barlow
,
D. N.
,
Kim
,
Y. W.
, and
Florschuetz
,
L. W.
,
1994
, “
Transient Liquid Crystal Technique for Convective Heat Transfer on Rough Surfaces
,”
ASME J. Turbomach.
,
116
, pp.
14
22
.
54.
Hoffs, A., Drost, U., and Bolcs, A., 1996, “Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness,” ASME Paper No. 96-GT-169.
55.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
, pp.
337
342
.
56.
Guo
,
S. M.
,
Jones
,
T. V.
,
Lock
,
G. D.
, and
Dancer
,
S. N.
,
1998
, “
Computational Prediction of Heat Transfer to Gas Turbine Nozzle Guide Vanes With Roughened Surfaces
,”
ASME J. Turbomach.
,
120
, pp.
343
350
.
57.
Schmidt, D. L., Sen, B., and Bogard, D. G., 1996, “Effects of Surface Roughness on Film Cooling,” ASME Paper No. 96-GT-299.
58.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
,
1998
, “
Measurement and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach.
,
120
, pp.
20
27
.
59.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1997
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
, pp.
522
529
.
60.
Tolpadi, A. K., and Crawford, M. E., 1998, “Predictions of the Effect of Roughness on Heat Transfer From Turbine Airfoils,” ASME Paper No. 98-GT-87.
61.
Boyle
,
R. J.
,
Lucci
,
B. L.
,
Spuckler
,
C. M.
, and
Camperchioli
,
W. P.
,
2001
, “
Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements
,”
ASME J. Turbomach.
,
123
, pp.
168
177
.
62.
Boyle, R. J., Lucci, B. L., and Spuckler, C. M., 2000, “Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer,” ASME Paper No. 2000-GT-0217.
63.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1985
, “
Predictions of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
,
107
, pp.
251
257
.
64.
Tarada
,
F.
,
1990
, “
Prediction of Rough Wall Boundary Layers Using a Low Reynolds Number k-ε Turbulence Model
,”
Int. J. Heat Fluid Flow
,
11
, pp.
331
345
.
65.
Weigand, B., Crawford, M. E., and Lutum, E., 1998, “A Theoretical and Experimental Investigation of the Effect of Surface Roughness on Film Cooling,” ISROMAC-7, Honolulu, HI.
66.
Richter, R., and Gottschlich, J. M., 1990, “Thermodynamic Aspects of Heat Pipe Operation,” AIAA Paper No. 90-1772.
67.
Anderson, W. G., Hoff, S., and Winstanley, D., 1993, “Heat Pipe Cooling of Turboshaft Engines,” ASME Paper No. 93-GT-220.
68.
Silverstein, C. C., Gottschlich, J. M., and Meininger, M., 1994, “The Feasibility of Heat Pipe Turbine Vane Cooling,” ASME Paper No. 94-GT-306.
69.
Zuo, Z. J., Faghri, A., and Langston, L., 1996, “Numerical Analysis of Heat Pipe Turbine Vane Cooling,” Third Biennial ASME European Joint Conference on Engineering System Design and Analysis, ASME PD-Vol. 78, No. 6.
70.
Zuo, Z. J., Faghri, A., and Langston, L., 1997, “A Parametric Study of Heat Pipe Turbine Vane Cooling,” ASME Paper No. 97-GT-443.
71.
Yamawaki
,
S.
,
Yoshidi
,
T.
,
Taki
,
M.
, and
Mimura
,
F.
,
1998
, “
Fundamental Heat Transfer Experiments of Heat Pipes for Turbine Cooling
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
580
587
.
72.
Tagashira, T., and Yoshida, T., 1999, “Consideration on Gas Turbine Performance Improvement by an Advanced Cooling System,” presented at the 14th International Symposium on Air Breathing Engines, Florence, Italy.
73.
Yoshida, T., 2000, “Cooling Systems for Ultra-High Temperature Turbines,” Proc. Int. Center for Heat and Mass Transfer Turbine 2000, Keynote Lecture, Cesme, Izmir, Turkey.
74.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
, pp.
774
781
.
75.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
, pp.
321
328
.
76.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1991
, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
113
, pp.
123
130
.
77.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
, pp.
872
880
.
78.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1998
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
, pp.
804
813
.
79.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1995
, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
,
117
, pp.
281
289
.
80.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
, pp.
381
389
.
81.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurement of Heat Transfer Coefficients and Friction Factors in Rib-Roughened Channels Simulating Leading-Edge Cavities of a Modern Turbine Blade
,”
ASME J. Turbomach.
,
120
, pp.
601
609
.
82.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened on All Walls
,”
ASME J. Turbomach.
,
120
, pp.
564
570
.
83.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
,
1996
, “
Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
118
, pp.
20
28
.
84.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1998
, “
Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
,
120
, pp.
63
69
.
85.
Becker, B. R., and Rivir, R. B., 1989, “Computation of the Flow Field and Heat Transfer in a Rectangular Passage With a Turbulator,” ASME Paper No. 89-GT-30.
86.
Abuaf
,
N.
, and
Kercher
,
D. M.
,
1994
, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,”
ASME J. Turbomach.
,
116
, pp.
169
177
.
87.
Shen
,
J. R.
,
Wang
,
Z.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Byerley
,
A.
,
1996
, “
Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes
,”
ASME J. Turbomach.
,
118
, pp.
428
434
.
88.
Hwang
,
J.-J.
, and
Liou
,
T.-M.
,
1997
, “
Heat Transfer Augmentation in a Rectangular Channel With Slit Rib-Turbulators on Two Opposite Walls
,”
ASME J. Turbomach.
,
119
, pp.
617
623
.
89.
Mochizuki
,
S.
,
Murata
,
A.
, and
Fukunaga
,
M.
,
1997
, “
Effects of Rib Arrangements on Pressure Drop and Heat Transfer in a Rib-Roughened Channel With a Sharp 180 deg Turn
,”
ASME J. Turbomach.
,
119
, pp.
610
616
.
90.
Hibbs
,
R. G.
,
Acharya
,
S.
,
Chen
,
Y.
,
Nikitopoulos
,
D. E.
, and
Myrum
,
T. A.
,
1998
, “
Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel With Cylindrical Vortex Generators
,”
ASME J. Turbomach.
,
120
, pp.
589
600
.
91.
Rivir
,
R. B.
,
Chyu
,
M. K.
, and
Maciejewski
,
P. K.
,
1996
, “
Turbulence and Scale Measurements in a Square Channel With Transverse Square Ribs
,”
Int. J. Rotating Mach.
,
2
, No.
3
, pp.
209
218
.
92.
Rigby, D. L., 1998, “Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn,” ASME Paper No. 98-GT-329.
93.
Prakash
,
C.
, and
Zerkle
,
R.
,
1992
, “
Prediction of Turbulent Flow and Heat Transfer in a Radially Rotating Duct
,”
ASME J. Turbomach.
,
114
, pp.
835
844
.
94.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.
95.
Owen, J. M., and Rogers, R. H., 1989, Flow and Heat Transfer in Rotating-Disc Systems, Vol. 1: Rotor–Stator Systems, Research Studies Press, Taunton, UK; Wiley, New York.
96.
El-Oun
,
Z.
, and
Owen
,
J. M.
,
1989
, “
Pre-swirl Blade-Cooling Effectiveness in an Adiabatic Rotor–Stator System
,”
ASME J. Turbomach.
,
111
, pp.
522
529
.
97.
Ong
,
C. L.
, and
Owen
,
J. M.
,
1991
, “
Prediction of Heat Transfer in a Rotating Cavity With a Radial Outflow
,”
ASME J. Turbomach.
,
113
, pp.
115
122
.
98.
Gan
,
X.
,
Kilic
,
M.
, and
Owen
,
J. M.
,
1995
, “
Flow Between Contrarotating Disks
,”
ASME J. Turbomach.
,
117
, pp.
298
305
.
99.
Chen
,
J.-X.
,
Gan
,
X.
, and
Owen
,
J. M.
,
1997
, “
Heat Transfer From Air-Cooled Contrarotating Disks
,”
ASME J. Turbomach.
,
119
, pp.
61
67
.
100.
Owen, J. M., and Rogers, R. H., 1995, Flow and Heat Transfer in Rotating-Disc Systems, Vol. 2: Rotor–Stator Systems, Research Studies Press, Taunton, UK; Wiley, New York.
101.
Wilson
,
M.
,
Pilbrow
,
R.
, and
Owen
,
J. M.
,
1997
, “
Flow and Heat Transfer in a Preswirl Rotor–Stator System
,”
ASME J. Turbomach.
,
119
, pp.
364
373
.
102.
Karabay
,
H.
,
Chen
,
J.-X.
,
Pibrow
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
1999
, “
Flow in a ‘Cover-Plate’ Preswirl Rotor–Stator System
,”
ASME J. Turbomach.
,
121
, pp.
160
166
.
103.
Mirzaee
,
I.
,
Gan
,
X.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
1998
, “
Heat Transfer in a Rotating Cavity With a Peripheral Inflow and Outflow of Cooling Air
,”
ASME J. Turbomach.
,
120
, pp.
818
823
.
104.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Annuli
,”
ASME J. Turbomach.
,
117
, pp.
175
183
.
105.
Bohn, D., Kruger, U., and Nitsche, K., 1995, “Numerical Investigation of Flow Pattern and Heat Transfer in a Rotating Cavity Between Two Discs of the Compressor of a Siemens KWU V84.3 Gas Turbine,” ASME Paper No. 95-GT-144.
106.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
120
, pp.
824
830
.
107.
Bohn, D., Rudzinski, B., Surken, N., and Gartner, W., 1999, “Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage,” ASME Paper No. 99-GT-248.
108.
Chen
,
J.-X.
,
Gan
,
X.
, and
Owen
,
J. M.
,
1996
, “
Heat Transfer in an Air-Cooled Rotor-Stator System
,”
ASME J. Turbomach.
,
118
, pp.
444
451
.
109.
Steltz, W. G., 1987, “Generalized Transient Rotor Thermal Stress,” Heat Transfer and Fluid Flow in Rotating Machinery, Hemisphere Publishing Co.
110.
Long
,
C. A.
,
Morse
,
A. P.
, and
Zafiropoulos
,
N.
,
1995
, “
Buoyancy-Affected Flow and Heat Transfer in Asymmetrically Heated Rotating Cavities
,”
ASME J. Turbomach.
,
117
, pp.
461
473
.
111.
Guo
,
Z.
, and
Rhode
,
D. L.
,
1996
, “
Assessment of Two- and Three-Scale k-ε Models for Rotating Cavity Flows
,”
ASME J. Turbomach.
,
118
, pp.
826
834
.
112.
Roy, R. P., Devasenathipathy, S., Xu, G., and Zhao, Y., 1999, “A Study of the Flow Field in a Model Rotor–Stator Disk Cavity,” ASME Paper No. 99-GT-246.
113.
Han
,
J. C.
,
Zang
,
Y. M.
, and
Lee
,
C. P.
,
1994
, “
Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
116
, pp.
149
158
.
114.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
, pp.
42
51
.
115.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
, pp.
321
330
.
116.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
, pp.
847
857
.
117.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
, pp.
113
123
.
118.
Dutta
,
S.
,
Han
,
J.-C.
,
Zhang
,
Y.
,
Lee
,
C. P.
,
1996
, “
Local Heat Transfer in a Rotating Two-Pass Triangular Duct With Smooth Walls
,”
ASME J. Turbomach.
,
118
, pp.
435
443
.
119.
Han
,
J. C.
,
Zang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
, pp.
912
920
.
120.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1999
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME J. Turbomach.
,
121
, pp.
651
662
.
121.
Glezer, B., Moon, H. K., Kerrebrock, J., Bons, J., and Guenette, G., 1998, “Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow,” ASME Paper No. 98-GT-214.
122.
Glezer, B., Moon, H. K., and O’Connell, T., 1996, “A Novel Technique for the Internal Blade Cooling,” ASME Paper No. 96-GT-181.
123.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
, No.
1
, pp.
73
82
.
124.
Moore, J., 1968, “Effects of Coriolis on Turbulent Flow in Rotating Rectangular Channels,” MIT Gas Turbine Laboratory Report No. 89.
125.
Mori
,
Y.
, and
Nakayama
,
W.
,
1968
, “
Convective Heat Transfer in Rotating Radial Circular Pipes
,”
Int. J. Heat Fluid Flow
,
21
, pp.
1027
1040
.
126.
Ito
,
H.
, and
Nanbu
,
K.
,
1971
, “
Flow in Rotating Straight Pipes of Circular Cross Section
,”
ASME J. Basic Eng.
,
93
, pp.
383
394
.
127.
Kumar, G. N., and Deanna R. G., 1988, “Development of a Thermal and Structural Analysis Procedure for Cooled Radial Turbines,” ASME Paper No. 88-GT-18.
128.
Steinthorsson, E., Shih, T. I.-P., and Roelke, R. J., 1991, “Computation of the Three-Dimensional Flow and Heat Transfer Within a Coolant Passage of a Radial Flow Turbine,” AIAA Paper No. 91-2238.
129.
Steinthorsson, E., Shih, T. I.-P., and Roelke, R. J., 1991, “Algebraic Grid Generation for Coolant Passages of Turbine Blades With Serpentine Channels and Pin Fins,” AIAA Paper No. 91-2366.
130.
Dawes
,
W. N.
,
1994
, “
The Solution-Adaptive Numerical Simulation of the Three-Dimensional Viscous Flow in the Serpentine Coolant Passage of a Radial Inflow Turbine Blade
,”
ASME J. Turbomach.
,
116
, pp.
141
148
.
131.
Snyder, P. H., and Roelke, R. J., 1988, “The Design of an Air-Cooled Metallic High Temperature Radial Turbine,” AIAA Paper No. 88-2872.
132.
Taylor, C., Xia, J. Y., Medwell, J. O., and Morris, W. D., 1991, “Numerical Simulation of Three Dimensional Turbulent Flow and Heat Transfer Within a Multi-ribbed Cylindrical Duct,” ASME Paper No. 91-GT-8.
133.
Rigby, D. L., 1988, “Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn,” ASME Paper No. 88-GT-328.
134.
Wilcox, D. C., 1994, “Turbulence Modeling for CFD,” DCW Industries, La Canada, CA.
135.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
,
32
, No.
2
, pp.
247
255
.
136.
Park
,
C. W.
,
Lau
,
S. C.
, and
Kukreja
,
R. T.
,
1997
, “
Heat/Mass Transfer in a Rotating Two-Pass Square Channel With Transverse Ribs
,”
J. Thermophys. Heat Transfer
,
11
, pp.
8
16
.
137.
Arts, T., Lambert de Rouvroit, M., Rau, G., and Acton, P., 1992, “Aero-Thermal Investigation of the Flow Developing in a 180 Degree Turn Channel,” VKI preprint No. 1992–10.
138.
Rigby, D. L., Steinthorsson, E., and Ameri, A., 1997, “Numerical Prediction of Heat Transfer in a Channel With Ribs and Bleed,” ASME Paper No. 97-GT-431.
139.
Ekkad, S. V., Huang, Y., and Han, J. C., 1996, “Detailed Heat Transfer Distributions in Two-Pass Smooth and Turbulated Square Channels With Bleed Holes,” Fundamentals of Augmented Single-Phase Convection, ASME HTD-Vol. 330, pp. 133–140.
140.
Chambers, J. C., 1985, “The 1982 Encounter of British Airways 747 With the Mt. Galuggung Eruption Cloud,” AIAA Paper No. 85-0097.
141.
Campbell, E. E., 1990, “Volcanic Ash,” Proc. 1990 Flight Operations Symposium, pp. 2.3.1–2.3.34.
142.
Sieverding
,
C. H.
,
Arts
,
T.
,
Denos
,
R.
, and
Brouckaert
,
J.-F.
,
2000
, “
Measurement Techniques for Unsteady Flows in Turbomachinery
,”
Exp. Fluids
,
28
, pp.
285
321
.
You do not currently have access to this content.