Numerical stall flutter prediction methods are much needed, as modern jet engines require blade designs close to the stability boundaries of the performance map. A Quasi-3D Navier–Stokes code is used to analyze the flow over the oscillating cascade designed and manufactured by Pratt & Whitney, and studied at the NASA Glenn Research Center by Buffum et al. The numerical method solves for the governing equations with a fully implicit time-marching technique in a single passage by making use of a direct-store, periodic boundary condition. For turbulence modeling, the Baldwin–Lomax model is used. To account for transition, the criterion to predict the onset location suggested by Baldwin and Lomax is incorporated. Buffum et al. investigated two incidence cases for three different Mach numbers. The low-incidence case at a Mach number of 0.5 exhibited the formation of small separation bubbles at reduced oscillation frequencies of 0.8 and 1.2. For this case the present approach yielded good agreement with the steady and oscillatory measurements. At high incidence at the same Mach number of 0.5 the measured steady-state pressure distribution and the separation bubble on the upper surface was also found in good agreement with the experiment. But computations for oscillations at high incidence failed to predict the negative damping contribution caused by the leading edge separation. [S0889-504X(00)01304-0]

1.
AGARDograh No. 298, 1987, AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines.
2.
Clark
,
W. S.
, and
Hall
,
K. C.
,
2000
, “
A Time-Linearized Navier–Stokes Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
, pp.
467
476
.
3.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1993
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA J.
,
27
, pp.
777
787
.
4.
Kahl, G., and Klose, A., 1993, “Computation of Time Linearized Transonic Flow in Oscillating Cascades,” ASME Paper No. 93-GT-269.
5.
Montgomery, M. D., and Verdon, J. M., 1995, “A Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows Using an Implicit Wave-Split Scheme,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.
6.
Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper No. 78–257.
7.
Baldwin, B. S., and Barth, T. J., 1990, “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,” NASA TM 102847.
8.
Spalart, P. R., and Allmaras, S. R., 1992, “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439.
9.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
,
1997
, “
Computational Prediction of the Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
,
33
, pp.
759
846
.
10.
Sanz
,
W.
, and
Platzer
,
M. F.
,
1998
, “
On the Navier–Stokes Calculation of Separation Bubbles With a New Transition Model
,”
ASME J. Turbomach.
,
120
, pp.
36
42
.
11.
Weber, S., and Platzer M. F., 1999, “Steady and Dynamic Stall Analysis of the NLR 7301 Airfoil,” ASME Paper No. 99-GT-21.
12.
Weber, S., Jones, K. D., Ekaterinaris, J. A., and Platzer, M. F., 1999, “Transonic Flutter Computations for a 2D Supercritical Wing,” AIAA Paper No. 99-0798.
13.
Eulitz, F., 1999, “Unsteady Turbomachinery: Numerical Simulation and Modelling,” Proc. ODAS 99, ONERA-DLR Aerospace Symposium.
14.
Bakhle, M. A., Srivastava, R., Stefko, G. L., and Janus, J. M., 1996, “Development of an Aeroelastic Code Based on an Euler/Navier–Stokes-Aerodynamic Solver,” ASME Paper No. 96-GT-311.
15.
Chew, J. W., Marshall, J. G., Vahdati, M., and Imegrum, M., 1998, “Part-Speed Flutter Analysis of a Wide-Chord Fan Blade,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
16.
He
,
L.
,
1993
, “
New Two Grid Acceleration Method for Unsteady Navier–Stokes Calculations
,”
J. Propul. Power
,
9
, pp.
272
272
.
17.
Eguchi, T., and Wiedermann, A., 1995, “Numerical Analysis of Unstalled and Stalled Flutter Using a Navier–Stokes-Code with Deforming Meshes,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.
18.
Abhari
,
R. S.
, and
Giles
,
M.
,
1997
, “
A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping
,”
ASME J. Turbomach.
,
119
, pp.
77
84
.
19.
Gru¨ber
,
B.
, and
Carstens
,
V.
,
1998
, “
Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking Into Account Viscous Effects
,”
ASME J. Turbomach.
,
120
, pp.
104
111
.
20.
Weber, S., Benetschik, H., Peitsch, D., and Gallus, H. E., 1997, “A Numerical Approach to Unstalled and Stalled Flutter Phenomena in Turbomachinery Cascades,” ASME Paper No. 97-GT-102.
21.
Weber, S., Gallus, H. E., and Peitsch, D., 1998, “Numerical Solution of the Navier–Stokes Equations for Unsteady Unstalled and Stalled Flow in Turbomachinery Cascades With Oscillating Blades,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
22.
Kato, D., Outa, E., and Chiba, K., 1998, “On Sub-Cell Structure of Deep Rotating Stall in an Axial Compressor,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
23.
Tuncer
,
I. H.
,
Weber
,
S.
, and
Sanz
,
W.
,
1999
, “
Investigation of Periodic Boundary Conditions in Multipassage Cascade Flows Using Overset Grids
,”
ASME J. Turbomach.
,
121
, pp.
341
347
.
24.
Carstens, V., and Schmitt, S., 1999, “Comparison of Theoretical and Experimental Data for an Oscillating Transonic Compressor Cascade,” ASME Paper No. 99-GT-408.
25.
Fourmaux, A., 1999, “Blade-Row Interaction in a Transonic Turbine,” Proc. ODAS 99, ONERA-DLR Aerospace Symposium.
26.
Lin, J.-S., and Murthy, D. V., 1999, “Unsteady Aerodynamic Analysis of an Oscillating Cascade at Large Incidence,” ASME Paper No. 99-GT-22.
27.
Buffum
,
D. H.
,
Capece
,
V. R.
, and
El-Aini
,
Y. M.
,
1998
, “
Oscillating Cascade Aerodynamics at Large Mean Incidence
,”
ASME J. Turbomach.
,
120
, pp.
122
130
.
28.
Benetschik, H., 1991, “Numerische Berechnung der Trans- und U¨berschall-Stro¨mung in Turbomaschinen mit Hilfe eines impliziten Relaxationsverfahrens,” Doctorthesis, RWTH Aachen, Germany.
29.
Roe
,
P. L.
,
1981
, “
Approximative Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.
30.
Harten
,
A.
,
1983
, “
High Resolution Schemes for Hyperbolic Systems of Conservation Laws
,”
J. Comput. Phys.
,
49
, pp.
357
393
.
31.
van Leer
,
B.
,
1979
, “
Towards the Ultimative Conservative Difference Scheme V, A Second Order Sequel to Godunov’s Method
,”
J. Propul. Power
,
32
, pp.
101
136
.
32.
Rai
,
M. M.
, and
Chakravarthy
,
S. R.
,
1986
, “
An Implicit Form of the Osher Upwind Scheme
,”
AIAA J.
,
24
, No.
5
, pp.
735
743
.
33.
Chakravarthy
,
S. R.
,
1983
, “
Euler Equations—Implicit Schemes and Boundary Conditions
,”
AIAA J.
,
21
, No.
5
, pp.
699
705
.
34.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
, pp.
1559
1568
.
35.
Peitsch, D., Gallus, H. E., and Weber, S., 1995, “Computation of Unsteady Transonic 3D-Flow in Turbomachine Bladings,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.
You do not currently have access to this content.