An experimental and analytical research program determining the influence of vane/blade spacing on the vane and blade time-averaged and unsteady heat flux for a full-scale rotating turbine stage was performed. The turbine stage was operated at a transonic vane exit condition, with pressure and heat flux measurements obtained throughout the stage. This paper focuses on the midspan heat flux measurements for both the vane and blade at three vane/blade axial spacings: 20, 40, and 60 percent of vane axial chord. The time-averaged heat flux results for the vane and the blade are compared with predictions obtained using a two-dimensional, Reynolds-averaged multiblade row code, UNSFLO, developed by Giles (1984). The measured and predicted unsteady heat flux envelopes (as a function of vane/blade spacing) are also compared with predictions. For selected locations on the blade, a direct comparison between the measured phase-averaged surface pressure and the measured phase-averaged Nusselt number history is presented. At some locations along the surface the pressure and the heat flux are shown to be in phase, but at other locations they are not. The influence of vane/blade spacing on the blade heat load was found to be small, and much less than the differences caused by changes in the Reynolds number during the experimental matrix. [S0889-504X(00)00904-1]

1.
Dring, R. P., Joslyn, H. D., Hardin, L. W., and Wagner, J. J., 1981, “Research on Turbine Rotor–Stator Interaction and Rotor Negative Incidence Stall,” AFWAL-TR-81-2114.
2.
Rao, K. V., and Delaney, R. A., 1990, “Investigation of Unsteady Flow Through Transonic Turbine Stage, Part I: Analysis,” AIAA Paper No. 90-2408.
3.
Dunn, M. G., Bennett, W. A., Delaney, R. A., and Rao, K. V., 1990, “Investigation of Unsteady Flow Through a Transonic Turbine Stage: Part II—Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data,” AIAA Paper 90-2409.
4.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
, and
Abhari
,
R. S.
,
1999
, “
Influence of Vane–Blade Spacing on Transonic Turbine Stage Aerodynamics: Part I—Time-Averaged Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
663
672
.
5.
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Abhari
,
R. S.
,
Venable
,
B. L.
, and
Delaney
,
R. A.
,
1999
, “
Influence of Vane–Blade Spacing on Transonic Turbine Stage Aerodynamics: Part II—Time-Resolved Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
673
682
.
6.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane–Blade Interaction in a Transonic Turbine, Part II: Heat Transfer
,”
J. Propul. Power
,
10
, No.
3
, pp.
312
317
.
7.
Hilditch, M. A., and Ainsworth, R. W., 1990, “Unsteady Heat Transfer Measurements on a Rotating Gas Turbine Blade,” ASME Paper No. 90-GT-175.
8.
Abhari
,
R. S.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Giles
,
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME J. Turbomach.
,
114
, pp.
818
827
.
9.
Dunn
,
M. G.
, and
Hause
,
A.
,
1982
, “
Measurement of Heat Flux and Pressure in a Turbine Stage
,”
ASME J. Eng. Power
,
104
, pp.
215
223
.
10.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analyses of Heat Flux Data in a Turbine Stage: Part I—Description of Experimental Apparatus and Data Analysis
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
229
233
.
11.
Dunn, M. G., 1984, “Time-Resolved Heat-Flux Measurements for a Full-Stage Turbine,” AFWAL-TR-84-2025.
12.
Dunn
,
M. G.
,
Seymour
,
P. J.
,
Woodward
,
S. H.
,
George
,
W. K.
, and
Chupp
,
R. E.
,
1989
, “
Phase-Resolved Heat-Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME J. Turbomach.
,
111
, pp.
8
19
.
13.
Kim, J., Ross, R. A., and Dunn, M. G., 1996, “Numerical Investigation of the Heat-Island Effect for Button-Type, Transient, Heat-Flux Gage Measurements,” Experimental Methods in Heat Transfer, ASME HTD-Vol. 327, pp. 33–39.
14.
Eaton, J. K., Mukerji, D., and Moffat, R. J., 1997, “3-D Convection in 2-D Boundary Layers: First Progress Report,” Development and Application of Heat Flux Calibration Standards and Facilities, ASME HTD-Vol. 353, pp. 187–189.
15.
Mukerji, D., Eaton, J. K., and Moffat, R. J., 1998, “A New Correlation for Temperature Rise Correction of Heat Flux Gages,” Numerical and Experimental Methods in Heat Transfer, ASME HTD-Vol. 361-5, pp. 631–636.
16.
Zilles, D. A., and Abhari, R. S., 1999, “Influence of Non-Isothermal Button Gage Surface Temperature in Heat Flux Measurement Applications,” Symposium on Calibration, Error Analysis, and Modeling of Heat Flux Sensors, ASME HTD-Vol. 364-4, pp. 85–91.
17.
Dunn
,
M. G.
,
Kim
,
J.
, and
Rae
,
W. J.
,
1997
, “
Investigation of the Heat-Island Effect for Heat-Flux Measurements in Short Duration Facilities
,”
ASME J. Turbomach.
,
119
, pp.
753
760
.
18.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
1998
, “
High-Accuracy Turbine Performance Measurements in Short-Duration Facilities
,”
ASME J. Turbomach.
,
120
, pp.
1
9
.
19.
Giles, M. B., 1984, “Stator/Rotor Interaction in a Transonic Turbine,” AIAA Paper 88-3093.
20.
Giles, M. B., 1988, “UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery,” MIT Gas Turbine Laboratory Report No. 195.
21.
Giles
,
M. B.
, and
Haimes
,
R.
,
1993
, “
Validation of a Numerical Method for Unsteady Flow Calculations
,”
ASME J. Turbomach.
,
115
, pp.
110
117
.
22.
Abhari
,
R. S.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Giles
,
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME J. Turbomach.
,
114
, pp.
818
827
.
23.
Rigby, M. J., Johnson, A. B., Oldfield, M. L. G., and Jones, T. V., 1989, “Temperature Scaling of Turbine Blade Heat Transfer With and Without Shock Wave Passing,” Proc. of the 9th International Symposium on Air Breathing Engines, Athens, Greece.
24.
Johnson
,
A. B.
,
Rigby
,
M. J.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
, and
Oliver
,
M. J.
,
1989
, “
Surface Heat Transfer Fluctuations on a Turbine Rotor Blade Due to Upstream Shock Wave Passing
,”
ASME J. Turbomach.
,
111, pp.
105
115
.
You do not currently have access to this content.