Abstract

Seemingly stationary (pre-sliding) interfaces between different materials, parts, and components are major sources of compliance and damping in structures. Classical pre-sliding contact models assume smooth elastic contact and predict that frictional slip leads to a well-defined set of stiffness and damping nonlinearities. However, reported data deviate from those predictions, and literature lacks a conclusive evidence leading to those deviations. In this work, the authors measure tangential stiffness and damping capacities inside a scanning electron microscope (SEM) while monitoring contacts between a rigid spherical probe and two materials (high-density polyethylene (HDPE) and polyurethane elastomer). Measured force, displacement, contact area, stiffness, and damping are then compared with predictions of classical models. In situ SEM images synchronized to the tangential force–displacement responses are utilized to relate the degree of plasticity and geometric alterations to stiffness and damping nonlinearities. In agreement with the classical models, increasing tangential loads cause softening in contacts under light normal preloads. In contrast, stiffness for HDPE increases with increasing tangential loads at heavy normal preloads due to plasticity and pileups over the contact. Material damping is prevalent for all loading cases in polyurethane samples thanks to nearly fully adhered contact, whereas for only light tangential loads in HDPE. With increasing tangential loading, specific damping capacity of HDPE contacts increases tenfold. This nonlinear increase is due to plastic shearing and frictional losses induced by tangential loading. Those findings suggest that predictive interface models should include geometric alterations of contact, plasticity, and material damping.

References

References
1.
Lacayo
,
R.
,
Pesaresi
,
L.
,
Groß
,
J.
,
Fochler
,
D.
,
Armand
,
J.
,
Salles
,
L.
,
Schwingshackl
,
C.
,
Allen
,
M.
, and
Brake
,
M.
,
2019
, “
Nonlinear Modeling of Structures With Bolted Joints: A Comparison of Two Approaches Based on a Time-Domain and Frequency-Domain Solver
,”
Mech. Syst. Signal Process.
,
114
, pp.
413
438
. 10.1016/j.ymssp.2018.05.033
2.
Hertz
,
H.
,
1882
, “
Ueber Die Berührung Fester Elastischer Körper
,”
J. für die reine und Angew. Math.
,
1882
(
92
), pp.
156
171
. 10.1515/crll.1882.92.156
3.
Goodman
,
L. E.
,
1962
, “
Contact Stress Analysis of Normally Loaded Rough Spheres
,”
ASME J. Appl. Mech.
,
29
(
3
), pp.
515
522
. 10.1115/1.3640599
4.
Spence
,
D. A.
,
1968
, “
Self Similar Solutions to Adhesive Contact Problems With Incremental Loading
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
305
(
1480
), pp.
55
80
.
5.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
. 10.1115/1.1490373
6.
Brizmer
,
V.
,
Zait
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on Elastic-Plastic Spherical Contact
,”
J. Mech. Mater. Struct.
,
1
(
5
), pp.
865
879
. 10.2140/jomms.2006.1.865
7.
Cattaneo
,
C.
,
1996
, “
Sul Contatto de Due Corpi Elastici: Distribuzione Locale Deglisforzi
,”
Rend. dell’Accademia Naz. dei Lincei
,
6
, pp.
342
349
.
8.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
.
9.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
T. F.
, and
Deresiewicz
,
H.
,
1951
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
ASME J. Appl. Mech.
,
18
(
3
), p.
331
.
10.
Lazan
,
B. J.
,
1968
,
Damping of Materials and Members in Structural Mechanics
,
Pergamon Press Ltd.
,
Oxford, England
, 317.
11.
Johnson
,
K. L.
,
1955
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
230
(
1183
), pp.
531
548
.
12.
Goodman
,
L. E.
, and
Brown
,
C. B.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
17
22
. 10.1115/1.3636453
13.
Johnson
,
K. L.
,
1962
, “
Discussion:‘Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading’(Goodman, L. E., and Brown, C. B., 1962, ASME J. Appl. Mech., 29, pp. 17–22)
,”
ASME J. Appl. Mech.
,
29
(
4
), p.
763
. 10.1115/1.3640678
14.
Segalman
,
D. J.
,
Bergman
,
L. A.
, and
Starr
,
M. J.
,
2006
, “
Joints Workshop 2006 Final Report
,”
NSF Sandia Natl. Lab. Arlington
, TX, Rep. No. Sandia-2007-7761.
15.
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
,
Resor
,
B. R.
,
Jew
,
M. D.
,
Lauffer
,
J. P.
, and
Ames
,
N. M.
,
2009
,
Handbook on Dynamics of Jointed Structures
,
Sandia Natl. Lab
,
Albuquerque, NM
.
16.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Effects of Surface Roughness and Lubrication on the Early Stages of Fretting of Mechanical Lap Joints
,”
Wear
,
271
(
11–12
), pp.
2928
2939
. 10.1016/j.wear.2011.06.011
17.
Usta
,
A. D.
,
Shinde
,
S.
, and
Eriten
,
M.
,
2017
, “
Experimental Investigation of Energy Dissipation in Presliding Spherical Contacts Under Varying Normal and Tangential Loads
,”
ASME J. Tribol.
,
139
(
6
), p.
061402
. https://doi.org/10.1115/1.4036183
18.
Bowden
,
F. P.
, and
Leben
,
L.
,
1939
, “
The Nature of Sliding and the Analysis of Friction
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
169
(
938
), pp.
371
391
.
19.
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Between Moving Surfaces
,”
Dissertation
,
University of Cambridge
.
20.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
. 10.1115/1.1538190
21.
Ovcharenko
,
A.
,
Halperin
,
G.
,
Etsion
,
I.
, and
Varenberg
,
M.
,
2006
, “
A Novel Test Rig for In Situ and Real Time Optical Measurement of the Contact Area Evolution During Pre-Sliding of a Spherical Contact
,”
Tribol. Lett.
,
23
(
1
), pp.
55
63
. 10.1007/s11249-006-9113-9
22.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic–Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
. 10.1007/s11249-006-9156-y
23.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
The Evolution of Static Friction for Elastic-Plastic Spherical Contact in Pre-Sliding
,”
ASME J. Tribol.
,
133
(
3
). 10.1115/1.4004304
24.
Ovcharenko
,
A.
,
Halperin
,
G.
,
Verberne
,
G.
, and
Etsion
,
I.
,
2007
, “
In Situ Investigation of the Contact Area in Elastic–Plastic Spherical Contact During Loading–Unloading
,”
Tribol. Lett.
,
25
(
2
), pp.
153
160
. 10.1007/s11249-006-9164-y
25.
Patil
,
D. B.
, and
Eriten
,
M.
,
2016
, “
Effect of Roughness on Frictional Energy Dissipation in Presliding Contacts
,”
ASME J. Tribol.
,
138
(
1
), p.
011401
. 10.1115/1.4031185
26.
Patil
,
D. B.
, and
Eriten
,
M.
,
2015
, “
Frictional Energy Dissipation in Spherical Contacts Under Presliding: Effect of Elastic Mismatch, Plasticity and Phase Difference in Loading
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011005
. 10.1115/1.4029020
27.
Patil
,
D. B.
, and
Eriten
,
M.
,
2014
, “
Effects of Interfacial Strength and Roughness on the Static Friction Coefficient
,”
Tribol. Lett.
,
56
(
2
), pp.
355
374
. 10.1007/s11249-014-0414-0
28.
Jackson
,
R. L.
,
Duvvuru
,
R. S.
,
Meghani
,
H.
, and
Mahajan
,
M.
,
2007
, “
An Analysis of Elasto-Plastic Sliding Spherical Asperity Interaction
,”
Wear
,
262
(
1–2
), pp.
210
219
. 10.1016/j.wear.2006.05.011
29.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
Elastic–Plastic Spherical Contact Under Cyclic Tangential Loading in Pre-Sliding
,”
Wear
,
270
(
11–12
), pp.
888
894
. 10.1016/j.wear.2011.02.017
30.
Zhao
,
B.
,
Zhang
,
S.
, and
Keer
,
L. M.
,
2017
, “
Spherical Elastic–Plastic Contact Model for Power-Law Hardening Materials Under Combined Normal and Tangential Loads
,”
ASME J. Tribol.
,
139
(
2
), p.
021401
. 10.1115/1.4033647
31.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
In Situ and Real-Time Optical Investigation of Junction Growth in Spherical Elastic–Plastic Contact
,”
Wear
,
264
(
11–12
), pp.
1043
1050
. 10.1016/j.wear.2007.08.009
32.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
. 10.1115/1.4001238
33.
Hutchens
,
S. B.
,
Hall
,
L. J.
, and
Greer
,
J. R.
,
2010
, “
In Situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
,”
Adv. Funct. Mater.
,
20
(
14
), pp.
2338
2346
. 10.1002/adfm.201000305
34.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
37
), pp.
11502
11507
. 10.1073/pnas.1509120112
35.
Delaine-Smith
,
R. M.
,
Burney
,
S.
,
Balkwill
,
F. R.
, and
Knight
,
M. M.
,
2016
, “
Experimental Validation of a Flat Punch Indentation Methodology Calibrated Against Unconfined Compression Tests for Determination of Soft Tissue Biomechanics
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
401
415
. 10.1016/j.jmbbm.2016.02.019
36.
Humood
,
M.
,
Shi
,
Y.
,
Han
,
M.
,
Lefebvre
,
J.
,
Yan
,
Z.
,
Pharr
,
M.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Polycarpou
,
A. A.
,
2018
, “
Fabrication and Deformation of 3D Multilayered Kirigami Microstructures
,”
Small
,
14
(
11
), p.
1703852
. 10.1002/smll.201703852
37.
Jacobs
,
T. D. B.
, and
Carpick
,
R. W.
,
2013
, “
Nanoscale Wear as a Stress-Assisted Chemical Reaction
,”
Nat. Nanotechnol.
,
8
(
2
), pp.
108
112
. 10.1038/nnano.2012.255
38.
Bernal
,
R. A.
,
Chen
,
P.
,
Schall
,
J. D.
,
Harrison
,
J. A.
,
Jeng
,
Y.-R.
, and
Carpick
,
R. W.
,
2018
, “
Influence of Chemical Bonding on the Variability of Diamond-Like Carbon Nanoscale Adhesion
,”
Carbon
,
128
, pp.
267
276
. 10.1016/j.carbon.2017.11.040
39.
Varenberg
,
M.
,
Etsion
,
I.
, and
Halperin
,
G.
,
2004
, “
Slip Index: A New Unified Approach to Fretting
,”
Tribol. Lett.
,
17
(
3
), pp.
569
573
. 10.1023/B:TRIL.0000044506.98760.f9
40.
Varenberg
,
M.
,
Etsion
,
I.
, and
Halperin
,
G.
,
2005
, “
Nanoscale Fretting Wear Study by Scanning Probe Microscopy
,”
Tribol. Lett.
,
18
(
4
), pp.
493
498
. 10.1007/s11249-005-3609-6
41.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
42.
Nowell
,
D.
,
Brake
,
M. R. W.
, and
Eriten
,
M.
,
2018
, “Considerations for Defining the Mechanisms of Friction,”
The Mechanics of Jointed Structures
,
M. R. W.
Brake
, ed.,
Springer
,
New York
, pp.
37
42
.
43.
Blanter
,
M. S.
,
Golovin
,
I. S.
,
Neuhauser
,
H.
, and
Sinning
,
H. R.
,
2007
, “
Internal Friction in Metallic Materials
,”
Handbook A.
, Springer Series in Materials Science Book Series, Vol.
90
, p.
540
.
44.
Bicerano
,
J.
, and
Rieke
,
J. K.
,
1989
, “
Internal Friction in Polymer Systems
,”
J. Acoust. Soc. Am.
,
86
(
S1
), pp.
S51
S52
. 10.1121/1.2027545
45.
Matsushita
,
K.
,
Nishijima
,
S.
,
Okada
,
T.
, and
Okamoto
,
T.
,
1985
, “
Internal Friction and Young’s Modulus in Composite Materials
,”
Le J. Phys. Colloq.
,
46
(
C10
), pp.
C10
569
.
46.
Han
,
G.
,
Hess
,
C.
,
Eriten
,
M.
, and
Henak
,
C. R.
,
2018
, “
Uncoupled Poroelastic and Intrinsic Viscoelastic Dissipation in Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
84
, pp.
28
34
. 10.1016/j.jmbbm.2018.04.024
47.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
New York
.
48.
Bazrafshan
,
M.
,
de Rooij
,
M. B.
,
de Vries
,
E. G.
, and
Schipper
,
D. J.
,
2020
, “
Evaluation of Pre-Sliding Behavior at a Rough Interface: Modeling and Experiment
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041006
. 10.1115/1.4045900
49.
Ovcharenko
,
A.
, and
Etsion
,
I.
,
2009
, “
Junction Growth and Energy Dissipation at the Very Early Stage of Elastic-Plastic Spherical Contact Fretting
,”
ASME J. Tribol.
,
131
(
3
), p.
031602
. 10.1115/1.3123345
50.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
), pp.
817
839
. 10.1016/j.mechmat.2004.08.001
51.
Prisacariu
,
C.
,
2011
,
Polyurethane Elastomers: From Morphology to Mechanical Aspects
,
Springer Science & Business Media
,
New York
.
52.
GoodFellow-Material Supplier
,
2019
, “
High Density Polyethylene (HDPE) Material Properties
,” http://www.goodfellow.com/E/Polyethylene-High-density.html, Accessed November 13, 2019.
53.
Fischer-Cripps
,
A. C.
, and
Nicholson
,
D. W.
,
2004
, “
Nanoindentation. Mechanical Engineering Series
,”
ASME Appl. Mech. Rev.
,
57
(
2
), p.
B12
. 10.1115/1.1704625
54.
Blau
,
P. J.
,
1995
,
Friction Science and Technology
,
CRC Press
,
New York
.
55.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
New York
.
56.
Ben-David
,
O.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2010
, “
The Dynamics of the Onset of Frictional Slip
,”
Science
,
330
(
6001
), pp.
211
214
. 10.1126/science.1194777
57.
Bayart
,
E.
,
Svetlizky
,
I.
, and
Fineberg
,
J.
,
2016
, “
Fracture Mechanics Determine the Lengths of Interface Ruptures That Mediate Frictional Motion
,”
Nat. Phys.
,
12
(
2
), pp.
166
170
. 10.1038/nphys3539
58.
Rubino
,
V.
,
Rosakis
,
A. J.
, and
Lapusta
,
N.
,
2017
, “
Understanding Dynamic Friction Through Spontaneously Evolving Laboratory Earthquakes
,”
Nat. Commun.
,
8
(
1
), p.
15991
. 10.1038/ncomms15991
59.
Moore
,
K. J.
,
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2018
, “Elements of a Nonlinear System Identification Methodology of Broad Applicability With Application to Bolted Joints,”
The Mechanics of Jointed Structures
,
M. R. W.
Brake
, ed.,
Springer
,
New York
, pp.
355
379
.
60.
Eriten
,
M.
,
Kurt
,
M.
,
Luo
,
G.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2013
, “
Nonlinear System Identification of Frictional Effects in a Beam With a Bolted Joint Connection
,”
Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
245
264
. 10.1016/j.ymssp.2013.03.003
61.
Armand
,
J.
,
Salles
,
L.
,
Schwingshackl
,
C. W.
,
Süß
,
D.
, and
Willner
,
K.
,
2018
, “
On the Effects of Roughness on the Nonlinear Dynamics of a Bolted Joint: A Multiscale Analysis
,”
Eur. J. Mech.
,
70
, pp.
44
57
. 10.1016/j.euromechsol.2018.01.005
62.
Sawyer
,
L.
,
Grubb
,
D. T.
, and
Meyers
,
G. F.
,
2008
,
Polymer Microscopy
,
Springer Science & Business Media
,
New York, NY
.
63.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
,
Cambridge University Press
,
New York, NY
.
64.
Haward
,
R. N.
,
2007
, “
Strain Hardening of High Density Polyethylene
,”
J. Polym. Sci. Part B Polym. Phys.
,
45
(
9
), pp.
1090
1099
. 10.1002/polb.21123
65.
Petrović
,
Z. S.
, and
Ferguson
,
J.
,
1991
, “
Polyurethane Elastomers
,”
Prog. Polym. Sci.
,
16
(
5
), pp.
695
836
. 10.1016/0079-6700(91)90011-9
66.
Ghaednia
,
H.
,
Pope
,
S. A.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2016
, “
A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat
,”
Tribol. Int.
,
93
, pp.
78
90
. 10.1016/j.triboint.2015.09.005
67.
Greenwood
,
J. A.
,
Johnson
,
K. L.
, and
Matsubara
,
E.
,
1984
, “
A Surface Roughness Parameter in Hertz Contact
,”
Wear
,
100
(
1–3
), pp.
47
57
. 10.1016/0043-1648(84)90005-X
68.
Mikic
,
B. B.
, and
Roca
,
R. T.
,
1974
, “
A Solution to the Contact of Two Rough Spherical Surfaces
,”
ASME J. Appl. Mech.
,
41
(
3
), pp.
801
803
. 10.1115/1.3423393
69.
Popov
,
L.
,
Heß
,
M.
, and
Willert
,
E.
,
2019
, “Normal Contact without Adhesion,”
Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems
,
Springer-Verlag
,
Berlin AN
.
You do not currently have access to this content.