Abstract

Greenwood and Williamson (GW) and Greenwood and Tripp (GT) elastic contact models have extensively been used previously for the mixed-lubrication analysis of water-lubricated journal bearings (WLJBs). The approximate expressions of a parabolic cylinder function involved in these contact models are available in the literature which makes these models easy to implement in the mixed-lubrication analysis. However, approximate expressions available so far are valid only for the Gaussian distribution of asperity heights. Moreover, elastic-plastic contact models with few exceptions have rarely been used in the mixed-lubrication analysis of WLJBs. The present work demonstrates a simple numerical procedure to predict the mixed-lubrication parameters for WLJBs. The average Reynolds equation considering non-Gaussian flow factors is solved along with film thickness and load balance equations in a coupled manner. A routine is developed to predict the pressure curve (a plot between average asperity pressure and rigid body displacement) for different contact models and non-Gaussian surface topography, and the asperity pressure for a particular surface topography is predicted utilizing the concept of a macro-micro approach. The effect of non-Gaussian surface topography on the tribological performance of WLJBs is discussed in detail. The influence of different contact models on the performance of WLJBs is also presented. It is shown that the GT elastic contact model fails to simulate the effect of kurtosis and skewness properly. However, the Kogut and Etsion (KE) elastic-plastic contact model which is based on finite element method (FEM)-based analysis excellently simulates the non-Gaussian effect on the performance of the WLJB.

References

1.
Smith
,
E. H.
,
2020
, “
On the Design and Lubrication of Water-Lubricated, Rubber, Cutlass Bearings Operating in the Soft EHL Regime
,”
Lubricants
,
8
(
7
), p.
75
.
2.
Barszczewska
,
A.
,
Piątkowska
,
E.
, and
Litwin
,
W.
,
2019
, “
Selected Problems of Experimental Testing Marine Stern Tube Bearings
,”
Pol. Marit. Res.
,
26
(
2
), pp.
142
154
.
3.
Zhang
,
X.
,
Yin
,
Z.
,
Jiang
,
D.
,
Gao
,
G.
,
Wang
,
Y.
, and
Wang
,
X.
,
2016
, “
Load Carrying Capacity of Misaligned Hydrodynamic Water-Lubricated Plain Journal Bearings With Rigid Bush Materials
,”
Tribol. Int.
,
99
, pp.
1
13
.
4.
Tang
,
D.
,
Xiang
,
X.
,
Guo
,
J.
,
Cai
,
J.
,
Yang
,
T.
,
Wang
,
J.
, and
Han
,
Y.
,
2023
, “
On the Optimal Design of Staved Water-Lubricated Bearings Driven by Tribo-dynamic Mechanism
,”
Phys. Fluids
,
35
(
9
), p.
093611
.
5.
Dadouche
,
A.
, and
Conlon
,
M. J.
,
2016
, “
Operational Performance of Textured Journal Bearings Lubricated With a Contaminated Fluid
,”
Tribol. Int.
,
93
, pp.
377
389
.
6.
Feng
,
H. H.
,
Xu
,
C. D.
, and
Wan
,
J.
,
2014
, “
Mathematical Model and Analysis of the Water-Lubricated Hydrostatic Journal Bearings Considering the Translational and Tilting Motions
,”
Math. Probl. Eng.
,
2014
(
1
), pp.
1
15
.
7.
Bergmann
,
P.
,
Grün
,
F.
,
Summer
,
F.
, and
Gódor
,
I.
,
2018
, “
Evaluation of Wear Phenomena of Journal Bearings by Close to Component Testing and Application of a Numerical Wear Assessment
,”
Lubricants
,
6
(
3
), p.
65
.
8.
Sous
,
C.
,
Wünsch
,
H.
,
Jacobs
,
G.
, and
Broeckmann
,
C.
,
2016
, “
Prediction of Fatigue Limit of Journal Bearings Considering a Multi-axial Stress State
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
430
438
.
9.
Tang
,
D.
,
Xiao
,
K.
,
Xiang
,
G.
,
Cai
,
J.
,
Fillon
,
M.
,
Wang
,
D.
, and
Su
,
Z.
,
2024
, “
On the Nonlinear Time-Varying Mixed Lubrication for Coupled Spiral Microgroove Water-Lubricated Bearings With Mass Conservation Cavitation
,”
Tribol. Int.
,
193
, p.
109381
.
10.
Xiang
,
G.
,
Yang
,
T.
,
Guo
,
J.
,
Wang
,
J.
,
Liu
,
B.
, and
Chen
,
S.
,
2022
, “
Optimization Transient Wear and Contact Performances of Water-Lubricated Bearings Under Fluid-Solid-Thermal Coupling Condition Using Profile Modification
,”
Wear
,
502–503
, p.
204379
.
11.
Litwin
,
W.
,
2009
, “
Water-Lubricated Bearings of Ship Propeller Shafts—Problems, Experimental Tests and Theoretical Investigations
,”
Pol. Marit. Res.
,
16
(
4
), pp.
42
50
.
12.
Han
,
Y.
,
Yin
,
L.
,
Xiang
,
G.
,
Zhou
,
G.
,
Chen
,
H.
, and
Zheng
,
X.
,
2020
, “
An Experimental Study on the Tribological Performance of Water-Lubricated Journal Bearings With Three Different Materials
,”
Ind. Lubr. Tribol.
,
72
(
10
), pp.
1159
1165
.
13.
Prajapati
,
D. K.
, and
Ramkumar
,
P.
,
2022
, “
Surface Topography Effect on Tribological Performance of Water-Lubricated Journal Bearing Under Mixed-EHL Regime
,”
Surf. Topogr.: Metrol. Prop.
,
10
(
4
), p.
045022
.
14.
Zhang
,
H.
,
Zhou
,
G.
,
Zhong
,
P.
,
Wu
,
K.
, and
Ding
,
X.
,
2020
, “
Experimental Investigation on Stribeck Curves of Different Elastic Modulus Materials Under Oil and Water Lubrication Conditions
,”
Ind. Lubr. Tribol.
,
72
(
6
), pp.
805
810
.
15.
He
,
T.
,
Zou
,
D.
,
Lu
,
X.
,
Guo
,
Y. B.
,
Wang
,
Z. Y.
,
Li
,
W. Y.
, and
He
,
T.
,
2014
, “
Mixed-Lubrication Analysis of Marine Stern Tube Bearing Considering Bending Deformation of Stern Shaft and Cavitation
,”
Tribol. Int.
,
73
, pp.
108
116
.
16.
Wang
,
Q. J.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1997
, “
A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
456
461
.
17.
Gao
,
G.
,
Yin
,
Z.
,
Jiang
,
D.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2016
, “
Analysis on Design Parameters of Water-Lubricated Journal Bearings Under Hydrodynamic Lubrication
,”
Proc. IMechE Part J: J. Eng. Tribol.
,
230
(
8
), pp.
1019
1029
.
18.
Gu
,
T.
,
Wang
,
Q. J.
,
Xiong
,
S.
,
Liu
,
Z.
,
Gangopadhyay
,
A.
, and
Liu
,
Z.
,
2019
, “
Profile Design for Misaligned Journal Bearings Subjected to Transient Mixed-Lubrication
,”
ASME J. Tribol.
,
141
(
7
), p.
071701
.
19.
Xie
,
Z.
,
Rao
,
Z.
,
Ta
,
N.
, and
Liu
,
L.
,
2016
, “
Investigations on Transitions of Lubrication States for Water-Lubricated Bearing. Part I: Determination of Friction Coefficient and Film Thickness Ratios
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
404
415
.
20.
Gu
,
C.
,
Tu
,
J.
, and
Zhang
,
D.
,
2025
, “
Topology Optimization of the Misaligned Water-Lubricated Thrust Bearings
,”
ASME J. Tribol.
,
147
(
1
), p.
014102
.
21.
Luo
,
Q.
,
Dong
,
Q.
,
Zhao
,
B.
,
Yang
,
H.
,
Wei
,
J.
, and
Zhao
,
B.
,
2024
, “
A Numerical Investigation of Mixed Thermal Elastohydrodynamic Lubrication in Tilting-Pad Journal Bearing
,”
ASME J. Tribol.
,
146
(
9
), p.
092202
.
22.
Gu
,
T.
,
Jane Wang
,
Q.
,
Gangopadhyay
,
A.
, and
Liu
,
Z.
,
2020
, “
Journal Bearing Surface Topography Design Based on Transient Lubrication Analysis
,”
ASME J. Tribol.
,
142
(
7
), p.
071801
.
23.
Zhongliang
,
X.
, and
Weidong
,
Z.
,
2021
, “
Theoretical and Experimental Exploration on the Micro Asperity Contact Load Ratios and Lubrication Regimes Transition for Water-Lubricated Stern Tube Bearing
,”
Tribol. Int.
,
164
, p.
107105
.
24.
Deng
,
H.
,
Zhu
,
P.
,
Hu
,
C.
, and
He
,
T.
,
2022
, “
Study on Dynamic Lubrication Characteristics of the External Return Spherical Bearing Pair Under Full Working Conditions
,”
Machines
,
10
(
2
), p.
107
.
25.
Prajapati
,
D. K.
,
Katiyar
,
J. K.
, and
Prakash
,
C.
,
2023
, “
Determination of Friction Coefficient for Water-Lubricated Journal Bearing Considering Rough Surface EHL Contacts
,”
Int. J. Interact. Des. Manuf.
,
18
(
5
), pp.
3145
3153
26.
Ma
,
J.
,
Chao
,
S.
,
Zhang
,
H.
,
Chu
,
F.
,
Shi
,
Z.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2021
, “
Modelling Non-Gaussian Surface and Misalignment for Condition Monitoring of Journal Bearing
,”
Measurement
,
174
, p.
108983
.
27.
Lu
,
H.
, and
Tian
,
Z.
,
2023
, “
Investigation of the Static Performance of Hydrostatic Thrust Bearings Considering Non-Gaussian Surface Topography
,”
Lubricants
,
11
(
6
), p.
267
.
28.
Akchurin
,
A.
,
Bosman
,
R.
,
Lugt
,
P. M.
, and
Van Drogen
,
M.
,
2015
, “
On a Model for the Prediction of the Friction Coefficient in Mixed-Lubrication Based on Load-Sharing Concept With Measured Surface Roughness
,”
Tribol. Lett.
,
59
(
1
), p.
19
.
29.
Greenwood
,
J. A.
, and
Williamsons
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A
,
295
(
1442
), pp.
300
319
. http://doi.org/10.1098/rspa.1966.0242
30.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
31.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2001
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
32.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element-Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
33.
Lee
,
S. C.
, and
Ren
,
N.
,
1996
, “
Behavior of Elastic-Plastic Rough Surface Contacts as Affected by the Surface Topography, Load, and Materials
,”
Tribol. Trans.
,
39
(
1
), pp.
67
74
.
34.
Maier
,
M.
,
Pusterhofer
,
M.
,
Summer
,
F.
, and
Grün
,
F.
,
2019
, “
Validation of Statistic and Deterministic Asperity Contact Models Using Experimental Stribeck Curves
,”
Tribol. Int.
,
165
, p.
107329
.
35.
Prajapati
,
D. K.
, and
Tiwari
,
M.
,
2019
, “
Assessment of Topography Parameters During Running-In and Subsequent Rolling Contact Fatigue Tests
,”
ASME J. Tribol.
,
141
(
5
), p.
051401
.
36.
Patir
,
N.
, and
Cheng
,
H.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
(
2
), pp.
220
229
.
37.
Morales-Espejel
,
G. E.
,
2009
, “
Flow Factors for Non-Gaussian Roughness in Hydrodynamic Lubrication: An Analytical Interpolation
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
223
(
6
), pp.
1433
1441
.
38.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
39.
Liang
,
P.
,
Li
,
X.
,
Guo
,
F.
,
Cao
,
Y.
,
Zhang
,
X.
, and
Jiang
,
F.
,
2022
, “
Influence of Sea Wave Shock on Transient Start-Up Performance of Water-Lubricated Bearing
,”
Tribol. Int.
,
167
, p.
107332
.
40.
Jiang
,
X.
,
Cheng
,
H. S.
, and
Hua
,
D. Y.
,
2000
, “
A Theoretical Analysis of Mixed Lubrication by Macro-Micro Approach: Part I—Results in a Gear Surface Contact
,”
Tribol. Trans.
,
43
(
4
), pp.
689
699
.
41.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
42.
Bendaoud
,
N.
,
Mehala
,
K.
,
Youcefi
,
A.
, and
Fillon
,
M.
,
2012
, “
An Experimental and Numerical Investigation in Elastohydrodynamic Behaviour of Plain Cylindrical Journal Bearing Heavily Loaded
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. Sci.
,
226
(
10
), pp.
809
818
.
43.
Meng
,
F.
, and
Chen
,
Y.
,
2015
, “
Analysis of Elasto-hydrodynamic Lubrication of Journal Bearing Based on Different Numerical Methods
,”
Ind. Lubr. Tribol.
,
67
(
5
), pp.
498
508
.
44.
Dobrica
,
M. B.
,
Fillon
,
M.
, and
Maspeyrot
,
P.
,
2006
, “
Mixed Elastohydrodynamic Lubrication in a Partial Journal Bearing—Comparison Between Deterministic and Stochastic Models
,”
ASME J. Tribol.
,
128
(
4
), pp.
778
788
.
45.
Xie
,
Z.
,
Rao
,
Z.
, and
Liu
,
H.
,
2019
, “
Effect of Surface Topography and Structural Parameters on Lubrication Performance of a Water-Lubricated Bearing: Theoretical and Experimental Study
,”
Coatings
,
9
(
1
), p.
23
.
46.
Jedynak
,
R.
,
2019
, “
Exact and Approximate Solutions of the Infinite Integrals of the Asperity Height Distribution for the Greenwood and Williamson and the Greenwood and Tripp Asperity Contact Models
,”
Tribol. Int.
,
130
, pp.
206
215
.
You do not currently have access to this content.